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Why Fermi-Dirac and Bose-Einstein 
are distinct? 
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Beyond Standard Model…
Reasons of Pauli’s Exclusion Principle (PEP) 

Particle nature? Green’s general quantum field: paronic particles

Order 1: fermionic/bosonic fields

Order>1: parafermionic/parabosonic fileds

Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/
paraboson (and vice-versa)

Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
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Signature
Anti-/symmetric commutativity with a coefficient 





In a system of two fermions (i.e., two electrons),

PEP is violated with an amplitude probability of 

β

a† 0⟩ = 1⟩ a† 1⟩ = β 2⟩ a† 2⟩ = 0

a 0⟩ = 0 a 1⟩ = 0⟩ a 2⟩ = β 1⟩

β2 /2
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How about so far?
Ramberg and Snow (1988): 

DAMA (2009): 

Borexino (2011): 


Models scenarios implications 

Democratic scenario 
all type of particles have the same degree of violation 

β2/2 ≲ 10−26

β2/2 ≲ 10−47

β2/2 ≲ 10−60

β
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X-Rays
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Silicon

Drift

Detector


(SDD)



SDDs
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Based on sideward depletion

Charge particle or photon hits the silicon wafer


electron-hole pairs are generated 

free electrons move to the anode following the lower potential due to the concentric 
electrodes 


The amount of charge collected by the anode is proportional to the energy of the 
radiation (X-Rays range)
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VIP group
VIolation of Pauli Exclusion Principle

Open Systems

testing newly injected 

electrons

Close System

testing spontaneous 

emissions

VIP-Lead BEGe
VIP

VIP-2

VIP-3 GATOR
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….but also 
Wave Function Collapse (CSL, DP) [see Kristian Piscicchia’s talks]
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VIP-2
Target: Copper strips


WITHOUT CURRENT configuration: regime 
case (stable states: background)

WITH CURRENT configuration (180 A): dynamic 
case (PEP violation through electron capture)


SDD: 32 detectors by SDDs, stably kept  @ 
 °C even with the current in Cu


@LNGS Underground (beneath Gran Sasso 
Mountain – IT): ~1400 m of rock shielding
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VIP-Lead

Close System

testing spontaneous 

emissions

VIP-Lead BEGe
NCQG
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VIP-Lead
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VIP-Lead

[Phys. Rev. Lett. 129 (2022), 131301]

[under revision for Universe]

@ 90% CL
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Beyond Standard Models can be tested with X-Rays 
through the Pauli’s Exclusion Principle Violation (PEPV)  

Open system: 
VIP (past), VIP-2 (current), and VIP-3 and GATOR (future) 

Rigorous Data Analysis (Bayesian inference) 
Need for better Electron-atoms interaction modeling ( ) 


Close system: 
BEGE, VIP-Lead 

Effective theories of Quantum Gravity (NCQG) predicting PEPV  
Exclusion of the Electric Scenario and strong constraint over the Magnetic Scenario
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THANK YOU

Nint


