

Tests at INFN on X-ray photon counting hybrid pixel detectors based on the Timepix4 ASIC

<u>P. Cardarelli</u>, N.V. Biesuz, R. Bolzonella, V. Cavallini, P. Delogu, A. Feruglio, M. Fiorini, E. Franzoso, R. Longo, G. Mettivier, G. Romolini, V. Rosso, A. Taibi, S. Tudisco

High Precision X-ray Measurements 2023 – June 22nd, 2023 – Laboratori Nazionali di Frascati INFN

Medipix Collaboration

- Medipix Collaboration was born to transfer the technology developed for the LHC experiments to applications outside high-energy physics
- Medipix4 Collaboration based at CERN with 18 members
- INFN is an official member of the Medipix4 Collaboration since November 2020

- CEA, Paris, France
- CERN, Geneva, Switzerland
- DESY-Hamburg, Germany
- Diamond Light Source, England, UK
- IEAP, Czech Technical University, Prague, Czeciah
- IFAE, Barcelona, Spain
- JINR, Dubna, Russian Federation
- NIKHEF, Amsterdam, The Netherlands
- University of California, Berkeley, USA
- University of Canterbury, Christchurch, New Zealand
- University of Geneva, Switzerland
- University of Glasgow, Scotland, UK
- University of Houston, USA
- University of Maastricht, The Netherlands
- University of Oxford, England, UK
- INFN, Italy
- Chinese Spallation Neutron Source, Dongguan City, China
- Brazilian Light Source, Campinas, Brazil

²https://medipix.web.cern.ch/home

Hybrid pixel detectors

Medipix4 Collaboration is aimed at the development of innovative **hybrid pixel detectors** for particle tracking and medical imaging.

The semiconductor **sensor** and the **readout chip** (ASIC), are manufactured **independently** and later electrically coupled by means of a bump-bonding process

Advantages of hybrid approach:

- Standard CMOS can be used (follow industry)
- Sensor material can be changed (Si, GaAs, CdTe..)
- Semiconductor sensor can be replaced by a gas gain grid or MCP

INFN

ASIC

Medipix4 collaboration

Two Application Specific Integrated Circuits (ASICs) are developed and produced by the collaboration:

Courtesy of X. Llopart (CERN)

Through-Silicon Vias

For many applications large area covering is a fundamental requirement

- 4-side buttable pixel arrangement
- Target to build large area detectors by combining smaller modules
- The **Through-Silicon Vias (TSVs)** is the key technology for this paradigm shift
- Both chips have a 4-side buttable architecture:
 - Periphery integrated inside the pixel matrix
 - Prepare for readout using TSV (Through-Silicon-Vias)
 - Larger ASICs

Courtesy of X. Llopart (CERN)

Timepix4

Timepix4 is the new **particle-tracker and photon counting hybrid pixel detector** designed with the support of the Medipix4 collaboration

- 65nm technology
- Pixel matrix of 512 x 448 pixels (55 x 55 μm²)
- 6.94 cm² sensitive area
- 4-side buttable with <0.5% dead area
- Readout: Up to 160 Gbps readout bandwidth
- Very configurable architecture to accommodate many different applications

			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm – 8 metal	65nm – 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x
Sensitive area			1.98 cm ²	6.94 cm ²
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA	
		Event Packet	48-bit	64-bit 33%
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm²/s 5x
TOT energy resolution			< 2KeV	< 1Kev 2x
TOA binning resolution			1.56ns	195ps <mark>8x</mark>
TOA dynamic range			409.6 µs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz) 4x
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gb <mark>&2</mark> X
Target global minimum threshold			<500 e⁻	<500 e⁻

Courtesy of X. Llopart (CERN)

Timepix4 readout

Two different read-out modes:

Data-driven

- Particle identification and tracking
- Zero-suppressed continuous acquisition, up to 10.8 kHz/pixel
- Time of Arrival, sub-ns time binning <200 ps
- Time over Threshold 11-bit dynamic range with ~200 e-rms resolution

Frame-based

- Full frame readout with continuous read-write (CRW)
- No zero-suppression (no pixel address sent)
- 8-bits or 16-bit counter depth up to 5 x 10⁹ hits/mm²/s
- Frame rate limited by bandwidth, e.g. 44.6 kfps @ 163.84 Gbps (16 bit)

INFN

7

Timepix4 productions

- 65 nm CMOS (TSMC)
- ASIC productions:
 - Timepix4_v0 (Q1 2020)
 - Timepix4_v1 (Q4 2020)
 - Timepix4_v2 (Q4 2021)
 - Timepix4_v3 (Q1 2023)

Diced Timepix4v0 300mm wafer

Timepix4v1 with full (512 x 448) Si sensor (March 2021)

Medipix4

Medipix4 is the latest photon processing hybrid pixel detector designed with the support of the Medipix4 Collaboration

- **5.76 cm²** sensitive area.
- 4-side buttable architecture to cover 99.37% active area.
- **2 operation mode**: Fine Pitch (75 um pixel) and Spectroscopic (150 um pixel)
- 2 thresholds in Fine Pitch Mode and 8 in Spectroscopic Mode
- Configurable analog modes to accommodate a large range of different applications (from very fast to very low noise).
- **Pile-up filtering** circuit to discard tail pile-up events in the measurement.

		Fine Pitch Mode (FPM)	Spectroscopic Mode (SM)	
Technology		130 nm + 9 metals		
Pixel size (μm)		75 x 75	150 x 150	
Pixel arrangement		4-side buttable 320 x 320	4-side buttable 160 x 160	
On-pixel thresholds		2: SPMa + CSM	8: 1 SPMa + 7 CSM[6:0]	
Counter depth SRW [Full dynamic Range with overflow]		2 x [12 or 1] bits	8 x [12 or 1] bits	
		2 x [24 or 2] bits	8 x [24 or 2] bits	
Counter depth CRW [Full dynamic Range	with overflow]	2 x [12 or 1] bits	8 x [12 or 1] bits	
Operation Modes	SPM	2 THR, WD, Pileup Filtering	8 THR, WD, Pileup Filtering	
operation modes	CSM			
Output ports		1 to 16 SLVS @ 640Mbps DDR max		
May frame Data	1 FPM : 4 SM THRs	120 μs (8.3 Kfps) @ 12-bit CRW, 16 links @640Mbps and Split readout 10 μs (100 Kfps) @ 1-bit CRW, 16 links @640Mbps and Split readout		
	2 FPM : 8 SM THRs	240 μs (4.1 Kfps) @ 2x12-bit CRW or 24-bit, 16 links @640Mbps and Split readout 20 μs (50 Kfps) @ 2x1-bit CRW or 2-bit, 16 links @640Mbps and Split readout		
Input clocks		Readout clock up to 320 MHz (only in edge peripheries) Slow Control clock up to 40MHz		

Courtesy of X. Llopart (CERN)

First Medipix4 bonded to sensor by the end of 2023

MEDIPIX4 at INFN

- Activities funded by INFN-CSN5 for technological research and interdisciplinary application
- Main goal: exploitation of the family of application-specific integrated circuits (ASICs) developed by the Medipix4 Collaboration at CERN
- Main activities and applications of interest
 - New sensors development (SiC, UV)
 - Dosimetry and Nuclear Medicine
 - Nuclear Medicine Compact gamma camera
 - Dosimetry Gamma-ray detector for dosimetry and MV X-rays, Diagnostic X-ray beams, charged particles
 - X-ray imaging
 - Spectral imaging
 - Phase Contrast Imaging

Currently ongoing: test and characterization of Timepix4 assemblies

Assemblies, Readout, Acquisition software

- Silicon bump-bonded assemblies available
- High-Z sensor bump-bonded assemblies under development
- All measurements done so far on the Timepix4
 ASIC are based on the SPIDR4 read-out system
 developed by Nikhef
 - 1 Gb ethernet slow control, 10 Gb/s ethernet read-out and full bandwidth read-out (160 Gb/s though optical fibers and dedicated PCIe receiver board on DAQ server)
- Dedicated control and DAQ open-source software developed at INFN
- Control and DAQ FPGA-based board under development at INFN

Tests performed

- Threshold equalization
- Noisy pixel detection and masking
- Test pulse (simulating pattern of hits on pixels) test and calibration
- Data driven acquisition tests with radioactive sources and
 - picosecond pulsed laser
- Timing resolution measurements

Test pulse calibration

Calibration of ToT versus charge injected

- Analog testpulse
- Per pixel calibration over the whole matrix
- Automatic algorithm exploiting 10 Gbps links
- Calibration fit parameters distribution for linear region

R. Bolzonella (INFN FE)

Measurements with radioactive sources

- Ongoing measurements with radioactive sources: Sr-90, Am-241 and Cs-137
- Si-sensor 300 um

Test of Timepix4 fast data readout

- 2 links enabled at 2.56 Gbps (5.12 Gbps total)
 - SPIDR4 system + 10 Gb
 Ethernet link + 1 PC
- No noticeable difference w.r.t. slow-control read-out
- Example:
 - 90Sr source, 10s acquisition with fast read-out
 - Thr =800e with ~120 pixels masked
 - ~6 M packets received without errors (link stability looks to be very good)
 - PC 1 pixel packet = 1 count

Energy distribution measure with radioactive sources

INFN

Timing resolution measurements of Timepix4

• Setup

- Timepix4V2 bonded to a 100 µm n-on-p Si detector (borrowed from Nikhef):
 - Biased at -150 V
 - Metallization with holes pattern
- Pulsed Diode Laser PDL 800-B:
 - 1060 nm
 - Trigger simultaneously sent to laser and Timepix4 Trigger input

Measurement

- After TOT timewalk correction and VCO calibration:
 - Single pixel resolution of 111 ± 1 ps
 - Cluster timing resolution of o_{ToAAvg} = 49 ± 1 ps

INFN

First X-ray images

- Taken with Timepix4_v1 and a full-sized (2021)
- 300µm thick Si sensor
- Excellent bump bonding quality (<10 missing pixels in 230k)
- Experimental setup at CERN:
 - X-ray source, Cu target, 30 kVp
 - 16-bit frame-based mode
 - exposure time = 2 s
 - Images taken using the slow control
 - approx. 20k counts per pixel
 - The flatfield map from 20 identical images

Conclusions

- Medipix4 ASICs family: Timepix4 and Medipix4
- First Timepix4 assemblies with Si sensors are currently available at INFN
- Assemblies with other sensors (high Z, high density) will be available soon
- Testing and characterization of hybrid pixel detectors based on Timepix4 is ongoing at INFN laboratories (data-driven mode)

Next activities foreseen

- Characterization with radiation (radioactive sources, X-ray tubes and synchrotron light) in light of possible applications
- Test of Timepix4 frame-based mode

Thanks for the attention

