HPXM2023 - High Precision X-ray Measurements 19-23 June 2023 – INFN-LNF

Comparison of characteristics and performance between the new detection system based on Silicon Drift Detectors of XAFS beamline of Elettra and SESAME

> Daniela Cirrincione INFN-Trieste

RESEARCH

DRIFT FOR SOFT X-RAYS red POK

Abstract

The collaboration between INFN-Trieste, TIFPA, FBK, the Politecnico di Milano and Elettra-Sincrotrone Trieste over the past few years has led to the design, production and deployment of two state-of-the-art instruments that now equip the XRF/XAFS beamline of the SESAME synchrotron and the XAFS beamline of Elettra. Both these instruments are 64-channels modular detection systems based on monolithic array of Silicon Drift Detectors (SDD). Detection systems have large total collection area, capable of operating with low dead time and high count rate. They present excellent performance already at room temperature: an energy resolution at the Mn 5.9 keV Ka line below 170 eV FWHM. These instruments are similar but have their own unique and different characteristics due to the construction experience and the particular requirements of the beamline scientists who collaborated in the development of the detector systems, such as the new collimation system installed on the Elettra's instrument. In addition, they are optimised and seamlessly integrated with the beamlines for which they were designed.

D. Cirrincione*a,b, G. Agostini c, M. Antonelli a, G. Aquilanti c, P. Bellutti d,e, G. Bertuccio f, G. Borghi d,e, G. Cautero c,a, F. Ficorella d,e, M. Gandola f, D. Giuressi c,a, F. Mele f, R. H. Menk c,a, L. Olivi c,a, G. Orzan a, G. Pepponi d,e, A. Picciotto d,e, I. Rashevskaya e, A. Rachevski a, L. Stebel c, G. Zampa a, N. Zampa a,b, N. Zorzi d,e, A. Vacchi b,a

a INFN Trieste, Padriciano 99, Trieste, I-34149, Italy, b DMIF, University of Udine, Via delle Scienze 206, Udine, I-33100, Italy, c Elettra-Sincrotrone Trieste, s.s. 14 km 163,500 in Area Science Park, Trieste, I-34149, Italy, d Fondazione Bruno Kessler, Via Sommarive 18, Trento, I-38123, Italy, e TIFPA – INFN, Via Sommarive 14, Trento, I-38123, Italy, f Politecnico di Milano, Via Anzani 42, Como, I-22100, Italy,

- Development of high energy resolution SDD for soft X-rays
- Evolution of SDD technology in collaboration with FBK CMM Trento
- Evolution of FE electronics in collaboration with PoliMI
- Development of large surface SDD for X-ray astrophysics
- Development of detection systems for Advanced Light Sources

Scientific and technological applications of SDD

- X-ray Astrophysics
- Gamma-ray Astrophysics
- Advanced Light Sources
- Biophysics

•

- Medicine
- Nanotechnology
- Materials science
- Industry
- Cultural heritage

Ongoing developments: from prototypes to detectors

Improvement and detailed study to have:

- Detector optimization
- Excellent energy resolution performances at room temperatures
- Dedicated design of sensors and electronics for each application
- Reliability
- Repeatability

X-Ray Fluorescence (XRF) spectroscopy

Comparison of characteristics and performance between the new detection system and **SESAME** based on Silicon Drift Detectors of XAFS beamline of Elettra Cirrincione Ū.

X-ray Absorption Fine Structure (XAFS) spectroscopy and XANES (X-ray Absorption Near Edge Structure)

Why design a new detector system?

Requirements of the beamline scientist:

- Very good energetic resolution
- Work at room temperature or moderate cooling
- Large area, in multipixel array
- Low dead time
- High count rate
- Reliability and repeatability
- Excellent interaction with beamline software
- Ease of use by users (error-proof)
- Customized system geometry and features

Evolution of the Detector System (1)

Section of SDD sensor and potential energy of the electrons

G. Bertuccio, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY

2016

SIRIO: Ultra Low Noise CMOS Charge Sensitive Preamplifier

Very-low leakage current production process was developed at FBK

- Typical: < 150 pA/cm²
- Minimum: 25 pA/cm²

3.

3.0

2.5

2.0

1.5

1.0

0.5

Current (pA)

ode

T=20°C

100

0

200

300

0

Low-power and very-low noise optimized preampl. in sub-micron technology

• Power: 10 mW including the output buffer

• ENC of 1.27 e⁻ r.m.s. at 20 °C

G. Bertuccio, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY 2016

Sensor and preamplificator

- Sensors: SDD (linear array comprising 8 square cells with a 3 x 3 mm² active area)
- 64 channels -> 576 mm² active area
- Preamplifier: SIRIO (SFS3)
- Detector PCB

Scheme of the Detector System

- 1. Sensors
- 2. Detector PCBs
- 3. Front-End PCBs
- 4. Brass profile with cooling liquid flowing inside
- 5. Insertion guides at flanks of detecting heads
- 6. Rails for eight detection heads
- 7. Power supply and filters PCBs
- 8. Back-End PCBs
- 9. Cooling distribution inlet
- 10. Cooling distribution outlet
- 11. Ethernet PCBs
- 12. Power supply connectors

The Detector System

Figure 9: Front side of the detector system

Figure 10: Back side of the detector system

Figure 11: Right side of the detector system

Figure 12: Left side of the detector system

Figure 13: Down side of the detector system

The Detector System

- 8 strips
- 64 channels
- 576 mm² active area
- [500 mm² collimated active area for DS2]
- Tamb: stabilization of temperature (nitrogen flushing, chiller set at 20 °C and peltier cells at 0.3 V)
- **Tcool**: stabilization of temperature (nitrogen flushing, chiller set at 20 °C and peltier cells at 2.0 V)

• Calibration sample: K, Ti, Mn, Zn, Br, Zr

DS2 -> Difference between the two version

- 1. Sensors and collimators
- 2. Detector PCBs
- 3. Front-End PCBs
- 4. Brass profile with cooling liquid flowing inside
- 5. Insertion guides at flanks of detecting heads
- 6. Rails for eight detection heads
- 7. Power supply and filters PCBs
- 8. Back-End PCBs (FIR)
- 9. Cooling distribution inlet

10. Cooling distribution outlet

11.Ethernet PCBs

12. Power supply connectors

13. FICUS software (alignment, calibration, tools)

14. Digital filters

D2: features with or without collimators

	32 collimated channels	32 non-collimated channels
Part of the detector system	top	bottom
Average temperature of the sensors	23 °C	$23 \ ^{\circ}\mathrm{C}$
FWHM at the Mn 5.9 K α line	174 eV	178 eV
Best channel - FWHM	159 eV	166 eV
Worst channel - FWHM	199 eV	211 eV
Acquisition time	30 min	30 min
Counts	23,01 M	29,79 M
Peak to background ratio	972	243

DS2 – setup on XAFS Beamline of Elettra

DS1 – setup on XRF/XAFS Beamline of SESAME

Test with DS1

Original data, load from file	Flush Start acquiring Acquiring		Autosele	ect Cell	Det.	
riginal Histograms	半 没 の		Selection crite	ia		
175- 150- 125-		☑ D1.C1 // ▲ ☑ D1.C2 //	Select Reference	H M e Cell		
8 100- 75-			ON ON	ON ON	ON O	M
25-	uture the	D1.C6	ON ON	ON ON	ON O	N
ó 250 500 750	1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4095 Channels	D1.C8	ON ON	ON ON	ON O	
		HIDE ALL PLOTS	ON ON			DN
	Contact County Manualus Data PM-Ms Norm DM-M Count (6)	SHOW ALL PLOTS	ON ON	ON ON	ON O	DN
EIGINIMENT RESOLT # PEaks	Centers Counts Max value Delta (Wilking Horn, Firmini Quad (16)					
elect peak		FWHMs	ON ON	ON ON		
ielect peak		FWHMs of TOTAL SUM	ON ON	ON ON		
idect peak	FWHMs	FWHMs of TOTAL SUM 17.38	ON ON ON ON Peak reject	ON ON ON Peak V	ON O	ON ON Of F
ielect peak	FWHM:	FWHMs of TOTAL SUM 17.38 FWHMs of SUM	ON O	ON ON ON Peak V	Indth #	on on of I
sD0_STRIP_002	FWHMs 17.11 17.45 17.33 16.76 16.87 16.86 16.15 17.30 17.06 17.23 17.27 15.28 17.97 17.83 18.36 17.09	FWHMs of TOTAL SUM T7.38 FWHMs of SUM	ON ON ON ON Peak reject T 11 % ALIGNMEN	ON ON ON ON Peak V T PARAME channels	ON O ON O fidth # 20 TERS	DN DN Coff
SDD_STRIP_012 SDD_STRIP_020 SDD_STRIP_020	FWHMs [17.11] 17.45] 17.30 16.76 16.87] 16.86 16.15 17.30 [17.06] 17.23] 17.27 16.28 17.97] 17.83 18.36 17.09 [16.87] 17.40 17.24 16.73 17.09 17.24 17.66] 17.24	FWHMs of TOTAL SUM 17.38 FWHMs of SUM 16.91 17.28 17.48	CN CN CN CN Peak reject + 11% ALIGNMEN ALIGNMEN	ON ON Peak V T PARAME channels	oN 0 ON 0 fidth # 20 TERS	on on of F
SDD_STRIP_012 SDD_STRIP_020 SDD_STRIP_020 SDD_STRIP_016 SDD_STRIP_014 SDD_STRIP_014	FWHML 17.11 17.45 17.33 16.76 16.87 16.66 16.15 17.30 17.06 17.23 17.27 15.23 17.97 17.43 18.36 17.09 16.47 17.40 17.24 15.73 17.69 17.24 15.46 17.32 18.00 18.06 17.75 17.33 16.65 17.26 17.24 17.29 18.00 18.06 17.75 17.33 16.65 17.26	FWHMs of TOTAL SUM 17.38 FWHMs of SUM 17.28 17.48 17.48	CN CN CN CN Peak reject C 11 % ALIGNMEN ALIGNMEN Align all Peak reject Align all Align all Apple	ON ON ON ON Peak V T PARAME channels ic parameters		on on of F ver
SDD_STRP_012 SDD_STRP_012 SDD_STRP_000 SDD_STRP_016 SDD_STRP_014 SDD_STRP_015 SDD_STRP_015	FWHML 17.11 17.45 17.30 16.76 16.87 16.86 16.13 17.30 17.66 17.22 17.27 16.28 17.57 17.80 16.36 17.09 16.87 17.40 17.24 16.73 17.69 17.24 17.66 17.24 15.46 17.59 18.00 18.06 17.73 17.13 16.65 17.66 17.28 17.87 17.88 18.11 17.77 17.44 17.17 16.15 18.11 16.99 17.13 17.87 17.11 17.49 17.17 16.15	FWHMs of TOTAL SIM 7738 FWHMs of SIM 1591 1728 1748 1728 1728 1728	CN CN CN CN Peak reject + 11% Align all Align all Align all Align all Loed	ON ON ON ON Peak V TPARAME channels ic parameter ly parameters	idth 20) TERS	on on of I
SDD_STRP_012 SDD_STRP_012 SDD_STRP_010 SDD_STRP_016 SDD_STRP_014 SDD_STRP_014 SDD_STRP_015 SDD_STRP_015 SDD_STRP_021 SDD_STRP_022	FWHME 17.11 17.45 17.33 16.76 16.87 16.86 16.15 17.30 17.06 17.23 17.27 15.28 17.57 17.83 18.36 17.09 16.87 17.40 17.24 16.73 17.02 17.24 17.66 17.24 15.46 17.52 18.00 18.06 17.73 17.13 16.65 17.66 17.26 17.27 17.28 18.11 17.77 17.48 17.17 16.15 16.91 16.92 16.13 17.69 18.19 17.01 17.68 18.21 17.18 17.67 19.42 17.66 16.66 18.12 17.33	FWHMs of TOTAL SIM 7738 FWHMs of SIM 15691 1723 1748 1745 1723 1733	CN ON CN ON Peak reject	ON ON ON ON Peak V T PARAME channels ic parameters if from file to file	idth ≠ 20 (TERS	ve i

aks to Use

Calibration sample (Zr, K, Br, Zn, Mn, Ti)

19

Performance of DS1

	Temperature	FWHM Mn kα [eV]	Peaking time [µs]
	Tamb	195	0,4
	Tamb	177	0,7
	Tamb	171	1,0
•	Tamb	168	1,45
	Tcool	192	0,4
	Tcool	174	0,7
	Tcool	166	1,0
	Tcool	162	1,45

Mode select				
Last value	Detector	LDO	FPGA	ADC
Detector 1	27.81 °C	43.56 °C	35.81 °C	32.06 °C
Detector 2	28.50 °C	43.12 °C	35.87 °C	33.06 °C
Detector 3	27.12 °C	40.50 °C	35.94 °C	32.75 °C
Detector 4	24.75 °C	44.81 °C	36.25 °C	32.87 °C
Detector 5	26.75 °C	42.81 °C	34.75 °C	32.50 °C
Detector 6	27.50 °C	43.25 °C	35.19 °C	31.69 °C
Detector 7	25.87 °C	42.25 °C	35.94 °C	32.06 °C
Detector 8	26.75 °C	42.94 °C	35.25 °C	33.25 ℃

Mode select				
Last value	Detector	LDO	FPGA	ADC
Detector 1	7.75 ℃	48.00 °C	38.25 °C	33.56 °C
Detector 2	8.37 °C	47.44 °C	38.31 °C	34.69 °C
Detector 3	5.31 °C	44.12 °C	38.12 °C	34.37 °C
Detector 4	3.37 °C	49.00 °C	38.50 °C	34.44 °C
Detector 5	4.94 °C	46.69 °C	36.87 °C	33.81 °C
Detector 6	4.50 °C	47.06 °C	37.75 °C	33.44 °C
Detector 7	5.69 °C	46.25 °C	38.50 °C	33.56 °C
Detector 8	6.56 °C	47.12 °C	37.87 °C	34.75 °C

Performance of DS1 (1.5 µs peaking time, Mn_kα [eV])

Strip Position	Strip Name	Ch1 [eV]	Ch2 [eV]	Ch3 [eV]	Ch4 [eV]	Ch5 [eV]	Ch6 [eV]	Ch7 [eV]	Ch8 [eV]
1	strip12	166	186	166	166	168	167	162	169
2	strip20	167	168	170	161	166	176	167	167
3	strip16	162	163	168	166	172	163	164	161
4	strip14	162	164	169	169	164	163	170	166
5	strip15	165	170	164	169	166	161	163	164
6	strip21	170	167	163	170	165	167	167	165
7	strip22	175	172	170	173	167	168	165	165
8	strip18	180	167	169	174	173	179	168	175

Strip Position	Strip Name	Ch1 [eV]	Ch2 [eV]	Ch3 [eV]	Ch4 [eV]	${ m Ch5}$ ${ m [eV]}$	Ch6 [eV]	${ m Ch7}$ [eV]	Ch8 [eV]
1	strip12	160	169	159	158	163	162	155	164
2	strip20	159	164	160	156	162	167	165	160
3	strip16	157	156	160	158	164	156	160	155
4	strip14	156	160	164	165	158	156	158	159
5	strip15	162	166	159	158	161	159	156	158
6	strip21	159	158	158	160	161	165	162	160
7	strip22	161	162	161	174	161	162	160	160
8	strip18	173	165	164	167	166	170	162	171

Temperature	FWHM Mn kα [eV]	Peaking time [µs]
Tamb	195	0,4
Tamb	177	0,7
Tamb	171	1,0
Tamb	168	1,45
Tcool	192	0,4
Tcool	174	0,7
Tcool	166	1,0
Tcool	162	1,45

Mode select					. [Mode select				
Last value	Detector	LDO	FPGA	ADC		Last value	Detector	LDO	FPGA	ADC
Detector 1	27.81 °C	43.56 ℃	35.81 ⁰C	32.06 °C		Detector 1	7.75 ℃	48.00 °C	38.25 °C	33.56 °C
Detector 2	28.50 °C	43.12 °C	35.87 °C	33.06 °C		Detector 2	8.37 °C	47.44 °C	38.31 °C	34.69 °C
Detector 3	27.12 °C	40.50 °C	35.94 °C	32.75 °C		Detector 3	5.31 ℃	44.12 °C	38.12 °C	34.37 °C
Detector 4	24.75 °C	44.81 °C	36.25 ℃	32.87 °C		Detector 4	3.37 °C	49.00 °C	38.50 °C	34.44 °C
Detector 5	26.75 °C	42.81 °C	34.75 °C	32.50 °C		Detector 5	4.94 °C	46.69 °C	36.87 °C	33.81 °C
Detector 6	27.50 °C	43.25 °C	35.19 °C	31.69 °C		Detector 6	4.50 °C	47.06 °C	37.75 °C	33.44 °C
Detector 7	25.87 °C	42.25 °C	35.94 °C	32.06 °C		Detector 7	5.69 °C	46.25 °C	38.50 °C	33.56 °C
Detector 8	26.75 °C	42.94 °C	35.25 °C	33.25 °C		Detector 8	6.56 °C	47.12 °C	37.87 °C	34.75 °C
Detector 4 Detector 5 Detector 6 Detector 7 Detector 8	24.75 °C 26.75 °C 27.50 °C 25.87 °C 26.75 °C	44.81 °C 42.81 °C 43.25 °C 42.25 °C 42.94 °C	36.25 °C 34.75 °C 35.19 °C 35.94 °C 35.25 °C	32.87 °C 32.50 °C 31.69 °C 32.06 °C 33.25 °C		Detector 4 Detector 5 Detector 6 Detector 7 Detector 8	3.37 °C 4.94 °C 4.50 °C 5.69 °C 6.56 °C	49.00 °C 46.69 °C 47.06 °C 46.25 °C 47.12 °C	38.50 °C 36.87 °C 37.75 °C 38.50 °C 37.87 °C	34.44 33.81 33.44 33.56 34.75

DS1 (XANES) sample C09_Cr K-edge

Figure 9

Abs.

Normalised

LCA results for sample C9 (Cr concentration = 2.9 p.p.m.) at the Cr *K*-edge. The best fit (red line) to the experimental data (black dots) is obtained by a linear combination of the different phases, reported in the plot according to their multiplicative coefficients.

Test with DS2

Performance of DS2

- Tamb: medium temperature 26,3 °C
- Tcool: medium temperature 7,4 °C

	Temperature	FWHM Mn kα [eV]	Peaking time [µs]
	Tamb	192	0,4
	Tamb	173	0,7
	Tamb	166	1
•	Tamb	161	1,5
	Tcool	187	0,4
	Tcool	168	0,7
	Tcool	160	1
	Tcool	154	1,5
-			

Performance of DS1

Temperature	FWHM Mn kα [eV]	Peaking time [µs]
Tamb	195	0,4
Tamb	177	0,7
Tamb	171	1,0
Tamb	168	1,45
Tcool	192	0,4
Tcool	174	0,7
Tcool	166	1,0
Tcool	162	1,45

Performance of DS2 (1.5 µs peaking time, Mn_kα [eV])

1u5 - Tamb	ch1	ch2	ch3	ch4	ch5	ch6	ch7	ch8
strip12c	163	168	168	170	166	166	169	166
strip21c	155	164	154	156	166	171	158	159
strip19c	166	159	159	166	162	162	163	163
strip16c	153	153	153	151	155	154	156	157
strip22c	159	168	155	155	166	157	158	156
strip15c	-	160	158	159	151	161	164	157
strip13c	164	165	175	161	162	166	170	165
strip10c	-	179	176	180	181	178	180	173

	Temperature	FWHM Mn kα [eV]	Peaking time [µs]
	Tamb	192	0,4
	Tamb	173	0,7
	Tamb	166	1
	Tamb	161	1,5
	Tcool	187	0,4
	Tcool	168	0,7
	Tcool	160	1
	Tcool	154	1,5

1u5 - Tcool	ch1	ch2	ch3	ch4	ch5	ch6	ch7	ch8
strip12c	157	162	162	167	164	161	162	159
strip21c	149	157	152	148	158	165	151	156
strip19c	158	153	154	157	155	155	160	153
strip16c	147	150	147	147	149	150	151	150
strip22c	151	156	149	149	155	152	152	150
strip15c	-	151	153	151	152	156	157	153
strip13c	158	158	166	158	157	156	163	157
strip10c	-	175	173	177	180	175	177	169

- Tamb: medium temperature 26,3 °C
- Tcool: medium temperature 7,4 °C

Comparison DS1 vs DS2 (XANES) sample C09_Cr K-edge

Comparison between detector at SESAME and ELETTRA

Sample	C09	C11	C13	C20
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
Al	514	300	319	239
V	3.1	2.1	1.2	0.8
\mathbf{Cr}	2.90	2.92	3.48	4.48
Fe	397	131	129	212
Mn	38.2	11.9	19.6	12.8
Ni	2.4	1.8	1.6	1.5
Co	1.08	0.58	0.53	0.54
Cu	1.39	0.78	0.82	0.79
Zn	7.3	16.4	11.4	8.4
Rb	0.85	0.52	0.51	0.25
Sr	138	100	105	72
Mo	0.29	0.20	0.16	0.13
\mathbf{Cd}	0.18	0.17	0.12	0.34
Ba	6.2	4.2	3.4	3.0
\mathbf{Pb}	0.9	2.5	0.8	0.6
U	1.6	1.4	1.3	1.2

Two Detector System for two Synchrotron

SESAME

New beamline, new challenges: TwinMic Beamline (Elettra-Sincrotrone Trieste)

The microscope is operated in the 400 - 2200 eV photon energy range

Gianoncelli A., et al. "Current status of the TwinMic beamline at Elettra: a soft X-ray transmission and emission microscopy station." *Journal of Synchrotron radiation* 23.6 (2016): 1526-1537.

	Current TwinMic detector system	Novel SDD detector system
Detectors – Total N. of Channels	8 - 8	4 - 32
Total active area [mm ²]	240	1230
Solid angle [%]	4	27
Counts [kcounts/s]	35,1	195,0
Counts gain [%]	100	556
Experiment time equivalent [hh:mm]	10:00	1:48

Detector System TM (TwinMic of Elettra)

Mg Ka Al Ka

Si Ka Scatter Peak

DS-TM: XRF Topography with structure1

Conclusions

- SDDs have very good performance and are a very important scientific and technological instrument
- Versatile dedicated design of detectors system
 - Very good energetic resolution
 - Work at room temperature
 - Large area, in multipixel array
 - Low dead time
 - High count rate
- Numerous important applications of the detector system:
 - Agricultural and food chain (pollutants and contaminants)
 - Biophysics
 - Materials science and industry
 - Cultural heritage

- Cirrincione, D., et al. "A new collimated multichannel modular detection system based on Silicon Drift Detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1049 (2023): 168118.
- Vacchi, A., et al. "Recent progress in high resolution X-ray customised detection systems." Journal of Physics: Conference Series. Vol. 2380. No. 1. IOP Publishing, 2022.
- Carlomagno, Ilaria, et al. "Trace-element XAFS sensitivity: a stress test for a new XRF multi-detector." Journal of Synchrotron Radiation 28.6 (2021): 1811-1819.
- Cirrincione, D. "First characterization of the detector system for the XAFS beam-line of the synchrotron light source SESAME." Il nuovo cimento C 42.5 (2019): 1-8.
- Rachevski, Alexander, et al. "The XAFS fluorescence detector system based on 64 silicon drift detectors for the SESAME synchrotron light source." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 936 (2019): 719-721.
- Kourousias, G., et al. "XRF topography information: Simulations and data from a novel silicon drift detector system." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 936 (2019): 80-81.
- Bufon, J., et al. "Large solid angle and high detection efficiency multi-element silicon drift detectors (SDD) for synchrotron based X-ray spectroscopy." AIP Conference Proceedings. Vol. 2054. No. 1. AIP Publishing LLC, 2019.
- Bufon, J., et al. "A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy." Journal of Instrumentation 13.03 (2018): C03032.

HPXM2023 - High Precision X-ray Measurements 19-23 June 2023 – INFN-LNF

THANKS FOR YOUR ATTENTION

Comparison of characteristics and performance between the new detection system based on Silicon Drift Detectors of XAFS beamline of Elettra and SESAME

D. Cirrincione – INFN-Trieste

Output Count Rate (OCR)

Output count-rate (OCR) versus input count-rate (ICR), obtained with different peaking time ranging from 0.4 to 1.6 µs. Test with 13 active cells to confirm the ability of the new system to work at high input count-rates (ICR) while maintaining low dead time and a good energy resolution. This translates into an output countrate (OCR) of 15.5 Mcount/s for the entire 64 elements collimated detector.

Bufon, J., et al. "Large solid angle and high detection efficiency multi-element silicon drift detectors (SDD) for synchrotron based X-ray spectroscopy." *AIP Conference Proceedings*. Vol. 2054. No. 1. AIP Publishing LLC, 2019.

Comparison of characteristics and performance between the new detection system based on Silicon Drift Detectors of XAFS beamline of Elettra and SESAME D. Cirrincione

36