eXTP (enhanced X-ray Timing and Polarimetry mission): scientific objectives and sensors

Daniela Cirrincione on behalf of the eXTP Consortium INFN-Trieste

0

Abstact

The Enhanced X-ray Timing and Polarimetry (eXTP) mission is a collaboration between Chinese and European research institutes and is designed to study the state of matter under extreme conditions of gravity, density and magnetic field. The primary objectives are to determine the equation of state of matter at densities higher than nuclear, measure QED effects in very high magnetic fields and study accretion discs in the strong gravity regime. To do this, the mission will study neutron stars in binary and isolated systems, magnetars and black holes.

The observations will be carried out thanks to the satellite's instrumentation, which will allow spectroscopy, timing and polarimetry of X-ray sources in the 0.5-30 keV energy range to be analysed simultaneously. The instrumentation includes the Spectroscopic Focusing Array (SFA), the Large Area Detector (LAD), the Polarimetry Focusing Array (PFA) and the Wide Field Monitor (WFM).

The Trieste section of INFN and TIFPA, in particular, are involved in this mission through the design and testing of Silicon Drift Detectors (SDD) for LAD and WFM, large area sensors for collimator X-ray spectroscopy and imaging respectively.

In order to achieve the scientific objectives of the mission, the sensors must meet very stringent specifications. Design techniques and verification measures were devised to assess their characteristics in order to carry out a careful selection process before integration.

Main features of eXTP

- eXTP enhanced X-ray Timing and Polarimetry mission
- Very large collecting area
- Good spectral resolution
- Unprecedented polarimetry capabilities
- Explore the properties of matter and propagation of light in the most extreme condition of density of matter, gravity and magnetic fields

eXTP international consortium

eXTP (enhanced X-rayTiming and Polarimetry mission): scientific objectives and sensors

Cirrincione

Ō

4

Mission

- Launch is planned for 2027
- Ended of phase-B
- To be launched in a low-earth

orbit at an altitude of ≤570 km

- The inclination of the orbit is ≤2.5 deg (to minimize background)
- Baseline Launcher is the Chinese Long March-5 (CZ-5) vehicle
- Nominal science operations will last for 5 years, with a design goal for 8 years

eXTP mission system-level product tree

6

Scientific objectives

- 1. the physical nature of cold ultra-dense matter
- 2. the behaviour of matter and light in the space-time shaped by **strong-field gravity**
- 3. the astrophysics and physics of the **strongest magnetic fields** in nature
- Powerful X-ray observatory: monitor X-ray sky
- Multi-wavelength and multi-messenger studies for gravitational waves and neutrinos sources

Payload and instruments

- Spectroscopic Focusing Array (SFA) – a multiple short focal-length modules for large telescope area
- Large Area Detector (LAD)
- Polarimetry Focusing Array (PFA) – a polarimeter with imaging capability
- Wide Field Monitor (WFM)

The instrument configuration and key specifications

and the men amone comiguration and hey specifications				
Instrument	SFA	LAD	PFA	WFM
Configuration	9 telescopes	40 modules	4 telescopes	6 cameras
Optics or	Wolter-I, Nickel	capillary-plate	Wolter-I, Nickel	Coded mask
Collimator	F = 5.25 m	collimators	F = 5.25 m	
Detector	19-pixel Silicon	SDD	Gas Pixel Detector	SDD
	Drift Det. (SDD)		(GPD)	
Energy range	0.5 – 10 keV	2-30 keV	2-8 keV	2-50 keV
Effective area	≥0.6 m²@1-2 keV	$3.0~\mathrm{m^2}\mathrm{at}8~\mathrm{keV}$	500 cm² @ 2 keV	FoV ≥ 3.1 sr
or FoV	0.4 m² @ 6 keV		300 cm² @ 3 keV	
Energy res.	180 oV @ 6 koV	260 oV @ 6 koV	25% @ 6 koV	<500 oV@6 koV
(FWHM)	100 EV @ 0 KEV	200 27 @ 0 Kev	2570 @ 0 KeV	-2000 E1 @0 KE1
Time res.	10 µs	10 µs	10 µs	10 µs
Remarks	unprecedented	high throughput;	~ 5 times the area of	peak sensitivity:
	effective area in	effective area is	IXPE, X-ray polar.	1 Crab in 1s and
	the soft X-ray	a factor of 5-10	Pathfinder by NASA;	5 mCrab in 50
	energy range	larger than any	Min. Detectable	ks (5σ source);
		previous mission	Polarization ~3% in	Point source
			2-8 keV range	localization $\leq 1'$
	Soft response	Large area	Polarization	Monitoring

Table 1.1: The instrument configuration and key specifications

SFA - Spectroscopic Focusing Array

- 9 optics (X-ray telescope)
- Optics: Mirror + SDD at focal plane
- Sensor: 19-cells SDD (x9)
- Spectral and timing observation

SFA - Spectroscopic Focusing Array

Mirror assembly and SFA focal plane camera [composed by 19 cells SDD, electronics box, wheel mechanism, and thermal electric cooler (TEC)]

LAD - Large Area Detector

- 40 modules (effective area larger than 3 m²
- Sensor: 16 large area SDD for each module
- Large collecting area

capillary plate collimators

- Energy range: 2-30 keV
- Measure the energy and time of arrival of the incident photons

13

Collimator Plat

PFA - Polarimetry Focusing Array

- 4 telescopes (same optical design of SFA)
- X-ray imaging polarimetry
- Optics/collimator: Wolter-I (mirror nichel shell, multilayer structure)
- Sensor: Gas Pixel Detector (GPD)
- Energy range: 2-8 keV
- Focal plane camera

WFM - Wide Field Monitor

- 3 unit (6 cameras)
- Sensors: 4 SDD for each camera -> 24 SDD (position-sensitive)
- Optics/collimator: coded mask
- Energy range: 2-50 keV
- Covering about 33% of the sky
- Field of view and imaging
- Objective: monitoring X-ray sky (trigger and localization of transient event)

WFM - Wide Field Monitor

The ReDSoX Collaboration experience

In the last decade, development of innovative detection systems based on Silicon Drift Detectors (SDD) and integrated readout electronics (ASICs) for X-ray Astronomy (and other applications...)

39. Application Specific Integrated Circuits in large format hyperspectral imaging radiation detectors for space-borne instrumentation

Left Filippo Mele (Politecnico di Milan...

O 20/06/2023, 11:50

67. Silicon Drift Detector technologies for high-throughput spectral-timing X-ray space astronomy Francesco Ceraudo (INAF/IAPS) 20/06/2023, 12:30

81. Comparison of characteristics and performance between the new detection system based on Silicon Drift Detectors of XAFS beamline of Elettra and SESAME

Loniela Cirrincione (Istituto Nazionale di...

O 22/06/2023, 10:30

ReDSoX Silicon Drift Detectors

Heritage for Silicon Drift Detector for LAD and WFM

Depth [um]

- SDD production for ALICE
- Updates for large-area, lowpower, space qualified devices for X-ray missions in space
- LOFT phase-A mission study for ESA

Anode

Drift axis [µm]

2536

Alice SDD: active area 7.53 x 7.00 cm² LAD SDD: active area 10.86 x 7.00 cm²

Our main contribution: SDD of LAD and WFM WFM sensor LAD sensor

WFM sensor

- Dimensions: 72,4 x 77,1 mm²
- Thick: 450 μm
- Anodes: 384
- Pitch between anodes: 169 μm
- Standard design of cathodes

WFM sensor

- Dimensions: 72,4 x 77,1 mm²
- Thick: 450 μm
- Anodes: 384
- Pitch between anodes: 169 μm
- Standard design of cathodes

LAD sensor

- Dimensions: 72,4 x 120 mm²
- Thick: 450 μm
- Anodes: 224 (112 on each side)
- Pitch between anodes: 970 μm
- Dimension anodes: 110 μm
- New design of cathodes to focus the signal charge

LAD sensor

- Dimensions: 72,4 x 120 mm²
- Thick: 450 μm
- Anodes: 224 (112 on each side)
- Pitch between anodes: 970 μm
- Dimension anodes: 110 μm
- New design of cathodes to focus the signal charge

Prototype sensors: -ino version

LADino

- Dimensions: 72,4 x 21,3 mm²
- Thick: 450 μm
- Anodes: 10
- Pitch between anodes: 970 μm

WFMino

- Dimensions: 72,4 x 30,0 mm²
- Thick: 450 μm
- Anodes: 64
- Pitch between anodes: 169 μm

Optimization, testing and sensor selection

- Optimization: effective area, anode pitch, layout
- Preliminary tests by the manufacturer on wafers
- Extensive sensor characterization tests
- Flight qualification tests
- Spectroscopic performance tests

The automatic characterization tests of the LAD sensor anodes carried out with the Karl-Suss PM8-DSP doublesided probe-station and the use of a probe card equipped with 144 pins on the top and 32 on the bottom, and an example of the results with the dark current values of the anodes.

Recent eXTP references

- Zhang, Shuang-Nan, et al. "Enhanced X-ray Timing and Polarimetry mission: eXTP: an update on its scientific cases, mission profile and development status." Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray. Vol. 12181. SPIE, 2022.
- Feroci, Marco, et al. "The large area detector onboard the eXTP mission." Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray. Vol. 12181. SPIE, 2022.
- Hernanz, Margarita, et al. "The wide field monitor onboard the Chinese-European x-ray mission eXTP." Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray. Vol. 12181. SPIE, 2022.
- Rachevski, A., et al. "eXTP Large Area Detector: Qualification procedure of the mass production." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1046 (2023): 167750.

eXTP (enhanced X-ray Timing and Polarimetry mission): scientific objectives and sensors

 \mathbf{O}

THANKS FOR YOUR ATTENTION

Daniela Cirrincione on behalf of the eXTP Consortium INFN-Trieste