

HPXM2023

Laboratori Nazionali di Frascati 19-23 June 2023 @ Frascati, Italy

Investigation of Platinum contacts on High-Flux CdZnTe

<u>Manuele Bettelli</u>, Oriane Baussens, Silvia Zanettini, Francesca Casoli, Lucia Nasi, Giovanna Trevisi, Cyril Ponchut, Marie Ruat, Antonino Buttacavoli, Fabio Principato, Leonardo Abbene and Andrea Zappettini

CdZnTe Radiation Detectors

Cadmium Zinc Telluride is a semiconductor used for radiation detectors

CZT characteristics:

- High atomic number (Z)
 → Excellent absorption efficiency (3 mm of CZT can stop >95% of 100 keV radiation)
- Optimal band gap → Room Temperature Operation (no cryo-system needed)
- High μτ product
 → Spectroscopic detector
 (<1% @ 122 keV)

CdZnTe (CZT) is very appealing for direct X-ray detection in range 5-300 keV

CdZnTe Radiation Detectors

Application fields:

- Isotope recognition
- Astrophysics
- Medical therapy
- Particle physics
- Synchrotron detectors
- Non-Destructive Testing

Aim of the work

Some application required a sensor able to withstand to extremely high radiation flux (> 10¹⁰ ph/mm²/s)

Under high photon flux, standard CZT is affected by a strong polarization due to hole trapping that leads to poor performances New Redlen high flux CZT \rightarrow improved holes transport properties

Blocking contacts \rightarrow to minimize the leakage current

Unfortunately, usual contacts used for standard CZT may not be suitable for this new material

Standard CZT contacts

⁵⁷Co source

Planar detector

- Pt Std contacts

3 % FWHM

Gold

Standard gold **electroless** deposition technique developed in IMEM-CNR based on alcoholic solution

Standard grade CZT

Low leakage current and mechanically stable contact used for several detectors with different geometries. Excellent spectroscopic performances

High-flux CZT high leakage current >40 nA/mm² at 200V (1.5 mm-thick sample)

Platinum

Standard platinum electroless deposition technique developed in IMEM-CNR based on a mixed solution of methanol and DMF

Standard grade CZT

Low leakage current and mechanically stable contact tested in several samples. Excellent hole collection capability and good spectroscopy

> High-flux CZT High leakage current >80 nA/mm² at 150V (1.5 mm-thick sample)

High–Flux CdZnTe

Enhanced holes transport properties

High-Flux CdZnTe produced by Redlen Technologies is oriented → cathode and anode are deposited on faces perpendicular to the crystallographic direction <111>

Although CdZnTe is intrinsic, two faces are polar:

- Te-terminated (Te-face)
- Cd-terminated (Cd-face)

The same metal deposited on different faces could result in different behavior

Material	$\mu_e \tau_e (cm^2/V)$	$\mu_h \tau_h (cm^2/V)$
CZT HF	1.1 · 10 ⁻³	2.9 · 10 ⁻⁴
CZT standard	1.0 · 10 ⁻²	2.0 · 10 ⁻⁵

New developed contacts

Development of contacts suitable to high-flux CZT is necessary

We focused our efforts on:

- Gold electroless contacts
- Platinum sputtered contacts

We performed a new study in order to obtain mechanically stable blocking contacts on the high-flux CZT Redlen material

The study is carried out in the frame of a joint project between IMEM-CNR and ESRF on pixelated detectors

Test samples

Four detectors were realized with REDLEN High-Flux material. Detectors have the same geometry (5x5x1.5 mm³) but different contact metals

Detector are equipped with full-area cathode and a customized pixelated anode (pixel size is 500x500 µm² with 200 µm gap)

Samples:

SAMPLE NAME	CATHODE CONTACT <111> - Te face	ANODE CONTACT <111> - Cd face
РР	Platinum	Platinum
РА	Platinum	Gold
АР	Gold	Platinum
AA	Gold	Gold

0

Bulk leakage current were measured from the four detectors

AA and PA detectors had a large leakage current (about 40nA/mm² at -200V)

AP and PP detectors were the most promising samples (about 40pA/mm² at -800V)

Bulk leakage current were measured from the four detectors

AA and PA detectors had a large leakage current (about 40nA/mm² at -200V)

AP and PP detectors were the most promising samples (about 40pA/mm² at -800V)

From IV it is possible to deduce:

- PP sample shows extremely high rectifying ratio (>10⁴), so same metal on different faces can behave differently
- Au and Pt on Te-terminated surface behave similarly
- Pt on Cd-terminated face is necessary to ensure low leakage current

Focusing on Reverse bias:

IV behavior depends only on the metal on anode (Cd-face) \rightarrow Leakage current is dominated by holes

I_{pixel} [A]

10-1

10-1-

102

12

Focusing on Reverse bias: IV behavior depends only on the metal on anode (Cd-face) \rightarrow Leakage current is dominated by holes Pt on Cd-face is necessary to limit the holes injection A deep investigation of electrical properties of AP and PP were carried out at UNIPA: 10.5°C IV at different temperatures • 15.3°C 20.7°C 25.5°C 31.6°C . 10-1

Up to 2400V! (~200pA/mm² @ 20°C) Crucial in extremely high flux conditions

Curves fitted with ITD model:

- ϕ_{B0} is about 780 meV •
- Presence of oxide layer between Pt and CZT •

Structural and Compositional analysis of Pt contact

Lamella (thin cross section of metal-CZT junction) of Pt contact

Lamella prepared by FIB lift-out technique and analyzed by TEM

Analysis performed with:

- TEM-EDX
- High-Angle Annular Dark Field (HAADF)
- HRTEM

FESEM-FIB and TEM facilities at IMEM-CNR

Structural and Compositional analysis of Pt contact

14

- > 100nm thick platinum layer
- Stochiometric ratio of Cd(Zn) and Te is constant until the interface

100nm

Structural and Compositional analysis of Pt contact

- > 100nm thick platinum layer
- Stochiometric ratio of Cd(Zn) and Te is constant until the interface
- Presence of a thick layer of CdTeO₃: from 5 to 50 nm
- Oxide is monocrystalline and oriented minimizing the lattices mismatch

Spectroscopic performances

16

Spectroscopic performances were evaluated at UNIPA

Since both samples behaves similar, only AP results are shown

Good spectroscopic resolution considering the large interpixel gap

Spectroscopic performances

Spectroscopic performances were evaluated at UNIPA

Since both samples behaves similar, only AP results are shown

Good spectroscopic resolution considering the large interpixel gap

Excellent time-stability verified over a 24h monitoring

High-Flux performances

PP and AP samples were analyzed under high flux radiation at ESRF in Grenoble

Response linearity was verified up to 6.10¹¹ ph/mm²/s Good time stability

Summary

High performance contacts for HF CZT were developed

- Extremely low leakage current up to 15kV/cm
- Great electrical and spectroscopic time stability
- Very good linearity response up to 6.10¹¹ ph/mm²/s

Platinum contact was studied:

- Holes barrier height is about 780 meV
- Thick interfacial layer of CdTeO₃ is present under platinum contact

Thanks!

Any questions?

You can find me at: manuele.bettelli@imem.cnr.it