

Lab Setup: ALCOR use in dRICH facilities

Nicola Rubini^{1,2}, Luigi Pio Rignanese¹ on behalf of ePIC dRICH Bologna

> ¹INFN Bologna, ²University of Bologna 8 February 2023

Outline

ePle

- Introduction
- Irradiation and annealing campaign
- Characterization setup
- First campaign results Extras:
 - dRICH prototype
 - Portable setup AirBOx

Introduction

SiPMs are a valuable option for the Dual Rich optical readout:

- Cheap
- Low voltage operation
- Excellent time resolution
- Single photon detection
- Insensitive to magnetic field
- High spatial resolution

But:

eplé

- High number of channels
- High Dark Count Rate
- Prone to radiation damage.

In this first phase of the detector **R&D** we needed to test the capabilities of the **SiPMs** to withstand **radiation damage**:

- Sensor selection (Vendor and Model)
- Irradiation & Annealing campaigns

3

The test setup must mimic the operative condition in a multichannel configuration.

Irradiation & Annealing campaign

Several SiPMs sensors (> 120) from **different vendors** were tested. Different irradiation levels with 148 MeV protons @ TIFPA (TN). 2021 campaign $10^9-10^{11} n_{eq}$ 2022 campaign $4 \times 10^9 n_{eq}$ cycles

4

board	sensor	uCell (µm)	∨_⊠ (V)	PDE (%)	DCR (kHz/mm ²)	window	notes
HAMA1	S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al
	S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD
	S14160 3050HS	50	38	50		silicone	newer model lower V _{tel}
HAMA2	S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness
SENSL	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{se}
	MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version
BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD

3x3 mm² SiPM sensors

4x8 "matrix" (carrier board)

Edge connector (no plastic)

Temperature sensor for operation with Peltier cooling

Irradiation & Annealing campaign 2022

Test reproducibility of repeated irradiation-annealing cycles simulate a realistic experimental situation

<u>Irradiation</u> fluence/cycle of $10^9 n_{eq}$

^{150 °}C 150 hours annealing

Interleaved with full characterisation

5

Irradiation & Annealing campaign 2022

Test reproducibility of repeated irradiation-annealing cycles simulate a realistic experimental situation

<u>Irradiation</u> fluence/cycle of $10^9 n_{eq}$

Interleaved with full characterisation

6

online annealing

ePI

Automatic measurement of 4x SiPM boards (128 channels) climatic chamber low-temperature operation (T = -30 C) multiplexed source meter • **ALCOR-based front-end chain** FPGA (Xilinx) readout LED pulser **Power supplies** 00.0000 uA

IV setup: Dark Current - V_{BD}

ePlo

8

Keithley 2450 SMU (up to 10 fA resolution)
Keithley 7702 40 ch Mux
32 channels (2 carrier boards) fully automated measurement

DCR

ePIC

Full dressed redout:

- ALCOR v1 with TDCs in LET mode
- **Bias** distribution to fine **tune** the **HV** through precision DAC (Fe)
- Xilinx **FPGA** connected through high speed links (Samtec FIREFLY cables) for the acquisition

TDC threshold scan computed **automatically** to find the **baseline** and measure the **DCR**

LED optical bench - PDE

ePIC

- Same Alcor readout as for the DCR measurement
- Linear stage to scan different SiPMs
- LED driven by a fast RF pulser
- Coincidence computed in the FPGA

At the beginning of each line a reference sensor is scanned to ensure the maximum repeatability.

LuigiPio.Rignanese@bo.infn.it - Luigi Pio Rignanese

Dark current and DCR are essentially the same measurement

ePle

Every $10^9 n_{eq}$ of dose, we measure an increment of **500 kHz** in **DCR**

Annealing helps to recover up to **97%** of DCR and after each annealing roughly an **additional 15 kHz** of **DCR** is preset wrt new sensors.

Radiation damage remain **additive** even in this cycle configuration.

150 °C 150 hours oven annealing

Direct current annealing allows to reduce the DCR by a factor 10. Not as good as the oven but:

- 100 times faster
- can be done in-situ
- can be done more frequently

Needs a clever electronic design to bypass power supply filter and protect the front end

Multi-peak structure (detector dependent) moving with the threshold level due to **oscillations** after the signal peak. Probably due to **peaking** related to the coupling of the **RGC** and the **SiPM capacitance**.

dRich prototype box

- Made in Ferrara
- Working temperature -30°C
- Peltier cooling for subzero temperatures
- Water cooled
- All-included electronics (HOT)

Used for dRICH prototype in Test Beam 2021 and 2022

dRich prototype box

- Made in Ferrara
- Working temperature -30°C
- Peltier cooling for subzero temperatures
- Water cooled
- All-included electronics (HOT)
- Used for dRICH prototype in Test Beam 2021 and 2022

AirBOx™

Made in Bologna

Working temperature -30°C

Peltier cooling for subzero temperatures

Air cooled

Outside electronics (HOT) as in the experiment

Used for portable sensors or electronics characterisation

AirBOx™

Made in Bologna

Working temperature -30°C

18.91

Peltier cooling for subzero temperatures

Air cooled

Outside electronics (HOT) as in the experiment

Used for portable (providing dry air) sensors or electronics characterisation

Later in the lab...

Thank you!