

"ALCOR for EIC" day Introduction

ePIC status, schedule, impact on ALCOR

EIC timeline: 8 years and 2 months from starting oprerations

EPIC - Baseline Design

EPIC - Baseline Design

(nota su ALCOR)

dRICH schedule (adapted from ATHENA, shifted of one year)

assumes "in-house" assembly & test in Italy in one year and assembly and test in one year @ BNL + 1 quarter for "insertion" CAVEAT: note this "primordial" schedule was done really in hurry and limited consultation

G	antt chart: ePIC De	etector Sul	b-Syste	em Quo	arterly So	chedul	e																												
																	-		_				_									<u></u>			_
							Starting date	01/01/19		Year	1,	2021		2022	4 1	2023	4 1	2024	4 1	202		202	6	20	27	1	2028	4 1	202	9	203	2 4	20)31	+
							Year:	2019		Q	- 9	10 11	12 1	3 14 15	16 17	7 18 19	20 21	22 23	24 25	26 2	7 28	29 30 3	3 4	33 34	35 3	6 37 3	2 3	4 1	42 4	3 44	45 46 4	47 48	49 50	51 5	* ;2
							Quarter:	1		nQ	╧┦	1		0 1 1 10		3A	20 21		2	3	, 10			00 01	00 0		/0 0/	10 1				<u>/ 10</u>		4a	Ť
										CD milestor																									t
ID	Task	Start Time	Year	Quarter	Start Time nQ	End Time	Year	Quarter	End Time n	Q Duration G																								—	-
1	dRICH R&D	01/01/20	2020	1	5	30/06/26	2026	2	30	25																									Ι
2	dRICH Procurement	01/01/25	2025	1	25	31/12/28	2028	4	40	15																									
3	dRICH Assembly (In-House)	01/01/28	2028	1	37	31/12/28	2028	4	40	3																									
4	dRICH Assembly (in-situ)	01/10/28	2028	4	40	30/09/29	2029	3	43	3																									
5	dRICH Test (in situ)	01/06/29	2029	2	42	31/12/29	2029	4	44	2																									
6	dRICH Installation	01/01/30	2030	1	45	31/03/30	2030	1	45	0																						\square		Щ	1

SiPM targeted for early procurement: some pressure to choose soon the sensor How ALCOR would fit in this Gantt?

> 2023: v2 tests 2024: v3 proto (including packaging) + electronics proto? 2025: production? -→ 6000 (packaged/tested....) 2026 is ultimate deadline to define electronics

Who is using/will use ALCOR4EIC?

BO currently coordinating electronics development

TO \rightarrow ALCOR "card" + ASIC BO \rightarrow carrier card FE \rightarrow adapter card BO \rightarrow readout à la ARCADIA (break-out board)

- setup under developments in SA/CS/CT
- On the long-run potentially "two centers for assembly" ?
- TO-site: natural candidate for ALCOR production & test,
 "ALCOR" card production, functional test -→
- On the long-run potentially "two centers for assembly" ?
- "portable setup"

• ALCOR used during test beam 2021 (unsuccessfull) and 2022 (quite successfull, "bug" limited – and also noise...)

Relevant eRD projects (DoE funded) and CSN3 planning – relevant milestones for ALCOR

project	topic	FY	
eRD102	dRICH	22	 Realistic implementation of dRICH into the EIC detector (02/23), subject to the release of a common simulation framework, agreed by Detector-1 Collaboration, by 10/22 Initial assessment based on the first test beams (12/22) Realization of a suitable detector plane for the dRICH prototype (03/23)
eRD110	photosensors	22	 Automated setup for SiPM characterization in climatic chamber (9/2022) Comparative assessment of commercial (and prototypes not yet available on the market) of SiPM performance after irradiation 2/2023 (interim results available at 9/2022) Definition of an annealing protocol 2/2023
eRD102	dRICH	23	 Initial characterization of realistic mirror and aerogel components (04/23) Projected performance of the baseline detector as integrated into EPIC (06/23) Assessment of the dRICH prototype performance with the EIC-driven detection plane (10/23).
eRD109	ASIC	23	 Inhibit paradigm studies on ALCOR v1: 1/2023 Qualification of ALCOR v2: 7/2023 Results above presented for the draft TDR of EIC Detector 1: 9/2023 Design of ALCOR v3: 9/2023
eRD110	photosensors	23	 Timing measurement of irradiated (and annealed) sensors [6/23] Comparison of the results achieved with proton and neutron irradiation sources [8/23] Study of annealing in-situ technique with a proposed model selected as baseline for the draft Technical Design Report (TDR) [9/23]

Non potevamo piu' aspettare quindi siamo andati con MWP (solo 50 ALCOR v2) ma ora "finestra engineering run" (in 2023)

Data	Descrizione	
31-07-2023	Sottomissione su rivista di risultati ottenuti in campagna di irraggiamento SiPM	
30-11-2023	Realizzazione di una ampia superficie di rivelatori SiPM per la lettura ottica del prototipo dRICH basata su readout ALCOR.	-
31-12-2023	Presentazione schema di ottimizzazione delle dimensioni dei sensori CMOS 65 nm stitched per EPIC tracker sulla base della resa di produzione da ER1 ITS3	
31-12-2023	Contributo a simulazioni Detector 1 (in particolare per Si-Vertex e dRICH) per pre-TDR Detector 1	
31-12-2023	Contributo a studi di physics performance per Detector-1 nei canali esclusivi attraverso EpIC generator	
31-12-2023	Organizzazione giornate nazionali EIC	
31-12-2023	Misura in campo magnetico delle performance di prototipo LAPPD.	-

Punti per discussione / "desiderata" / requirements / misure da fare per ALCOR

2023 e' anno in cui si presenta piano finanziario a INFN per ePIC (a luglio 2023) e draft TDR (ottobre 2023):

- \rightarrow stima costi
- \rightarrow planning Gannt

Non potevamo piu' aspettare LNGS quindi siamo andati con MWP (solo 50 ALCOR v2) pero' ora "finestra engineering run" (in 2023) che fare? Parte discussione oggi

"ALCOR for EIC" day

requirements/constraints for ALCOR: ePIC DAQ, dRICH DAQ, DCR, throughput

"standard" but triggerless: continuous (streaming) readout à la ALICE/LHCb

How would fit ALCOR in dRICH readout?

See Roberto's talk: prototype electronics for 2023 keeps in mind ALCOR v2 + different aggregation: learning exercise

- Assume a stable clock can be derived from Machine with this frequency despite of bunch time variations
 - \rightarrow This clock or its (sub)multiples is distributed to frontend electronics as "System clock"
 - With bunch-phase recovery mechanism
 - Used for bunch level synchronization, coarse timestamp bookkeeping, serial communication and possibly timing measurements.

EIC clock 98.52 MHz → candidate clock for ALCOR: 295.56 MHz (or 394.08 MHz)

Coarse bin: 3.38 ns (or 2.54 ns)

dRICH estimates of throughput (ATEHENA)

Detector	Channels	DAQ Input (Gbps)	DAQ Output (Gbps)						
B0 Si	400 M	<1	<1						
B0 AC-LGAD	500k	<1	<1						
RP+OMD+ZDC	700k	<1	<1						
FB Cal	4k	80	1						
ECal	34k	5	5						
HCal	39k	5.5	5.5						
Imaging bECal	619M	4	4						
Si Tracking	60B	5	5						
Micromegas Tracking	66k	2.6	.6						
GEM Tracking	28k	2.4	.5						
uRWELL Tracking	50k	2.4	.5						
dRICH	300k	1830	14						
pfRICH	225k	1380	12						
DIRC	100k	11	11						
TOF	332k	3	.8						
Total		3334	62.9						

Table 2.5: Maximum data volume by detector.

ASSUMPTIONS

This was computed assuming an average 270 kHz DCR per pixel MAX before moving to annealing cycles given limitations on ALCOR and DAQ bandwidth

We considered already a factor 3 reduction due to timing selection (it might be 5 or 10...) [at the time of proposal it was ambiguous if It was at ALCOR or FPGA level]

Throughput assumed 64 bit per hit (TOT)

Throughput (I)

- ALCOR clock 320 MHz ma dati serializzati a frequenza DDR a gruppi di 8 canali → le parole di 32 bit sono encoded a 40 bit
- Questo porta a un limite massimo di 640 Mb/s che corrisponde a un nassimo rate su 8 canali di 16 MHz → quindi siamo ora limitati a 2 MHz su singolo canale (averaged su 8)

Starting to play with numbers and known limitations:

- Below no TOT
- Note that 10 Gbps limitation might be overcome (20 Gbps seems reachable even if rad. Tol. might be problem) to be investigated ---→ current target link at 14 Gbps (DAQ subwg where Pietro/Davide are involved) target FPGA: Xilinx Artix Ultrascale++ or Microchip Polarfire
- Exploit timing reduction

Throughput (II)

ALCOR test pulse (in inverse polarity) can act as "inhibit" of the digitalization. This could help greatly to reduce data throughput Note EIC beam bunch timing presentation by Todd (Sep. 2022)

	EIC Orbit	12.78 usec
Short summary:	Bunch spacing (Nb 290)	40.599 ns
,	Bunch spacing (Nb 1160)	10.150 ns
	Gap length	1.01 usec
	Collision spread (bunch	23-30 ps (ESR)
	length)	250-200 (ps)
		HSR

Notes:

- we will need to implement disable during gap region which is sizeable (8% data reduction 'for free")
- Bunch crossing every 10 ns! With a bunch length of 250 ps if we could select just 1 ns data reduction by a factor 10 before serializing stage in ALCOR

See Giulio's talk today

Note LHCb is thinking something very similar with FastRich

How react ALCOR to such "short" shutter cycles?

What happens if trailing edge is ON and leading edge was OFF

Critical measurement to be done in Turin:

What happens to the TOT measurement?

If it works then requirement on precise clock alignment / phase shift inside FPGA sending shutter to

01/02/2023

EIC_NET: MC & Physic ALCORS

The implementation of the shutter might reduce annealing cycles by a factor 10 Question for ASIC experts: will it really work this way? Question for ALL: we will might have in 1 ns a 5 MHz DCR but... we will then still see the rings? → simulation with flat noise is a must!! Work underway in TS-SA+Duke on noise → RM2/GE

01/02/2023

How much radiation? (the usual plot)

potential location of photosensors: ≈ 1-5 10⁷ n/cm² every 1 fb⁻¹

10¹¹ n/cm² 1-MeV n_{eq} is a "true maximum"

- 30 weeks @ 10^{34} cm⁻² s⁻¹= 100 fb⁻¹ \rightarrow 1-5 10^{9} n/cm²
- 10^{11} n/cm^2 would be reached in O(10+) years at full $\pounds!$

A moderately hostile environment: $10^9 1$ -MeV $n_{eq}/cm^2 \rightarrow most$ of the key physics topics $10^{10} 1$ -MeV $n_{eq}/cm^2 \rightarrow GPD$ and more statistically eager topics $10^{11} 1$ -MeV $n_{eq}/cm^2 \rightarrow may$ be we will never go here...

Can we use SiPM for a Cherenkov detector up to 10^{11} 1-MeV n_{eq} /cm² fluence?

Radiation is finally computed in ePIC

Best thing we had in the past (ATHENA)

Results from (new) background task force

Current position of sensors: z = 100 cm R ~ 235 cm (higher than in my usual estimate...)

EIC_NET: MC & Physics

2022 campaign: irradiation + annealing cycles

See Luigi's talk

"getting closer to the experimental setup"

- test reproducibility of repeated irradiated/annealing cycles on the same sensors. On-going campaign: next shot 3rd December!
- each shot is 10⁹ n_{eq} (remember: 0.2/1 year EIC at max lumi)
- extract parameters (<u>sensor and V_{over} specific</u>!) to shape annealing cycles in the experiment:
 - > f_d : every 10⁹ n_{eq} increases by 500 kHz DCR pixel rate (3x3 mm²)
 - \succ $f_{\rm a}$: each annealing leaves 15 kHz of additional DCR rate

$$DCR_r(k) = DCR_0 + f_d + (k-1)f_a$$

DCR after k irradiation and k-1 annealing cycles

- damage and recovery remain additive
- > annealing repairs f_a/f_d of a given sensor (97% here)
- Total of 134 sensors under test

29 November 2022

Electrically induced annealing techniques

The sensors current-annealed found at 55 kHz Residual DCR not good as in oven (15 kHz) but:

- 100 times faster!! (2.5 hours vs 200 hours!)
- can be done in-situ
- can be done more frequently -→ we reach "critical" 300 kHz after more time (more irradiation)

Specific R&D planned for 2023 on this item

29 November 2022

P. Antonioli - CPAD 2022 Workshop

How mitigate it? (II)

29 November 2022

P. Antonioli - CPAD 2022 Workshop

How to mitigate DCR/how impact on ALCOR?

- Cooling
- Annealing → in-situ... "high" temp + current
- Timing: shutter. \rightarrow new feature of ALCOR see Giulio's talk
- Timing: coarse (FPGA)
- Timing: further cuts (see next slides) DAM or Online level (PC) \rightarrow ALCOR time resolution
- Aggregation algorithms (not based on AI, and moderately on time resolution)
- AI/chatGPT at DAM level ;-)

ALCOR time resolution: is really 150 ps (even if LSB 25 ps)?

To further gain in background rejection (with respect to shutter) ALCOR+SIPM resolution must be able to cut within 1 ns

 $\rightarrow \sigma \sim 150 \text{ ps} \rightarrow 3 \sigma$ -cut (right/left)= 900 ps

but if we could have 100 ps \rightarrow 600 ps

Intrinsic time resolution

- Repeated test-pulses (N=200) using on-chip calibration circuit, external capacitor mounted on one ALCOR channel
- Vth scan to evaluate noise and time resolution ٠

• Note: contribution to noise and time resolution from test-pulse generator still to be disentangled. Room temperature.

Manuel & Fabio, giornate nazionali EIC 2021 (Dicembre)

https://agenda.infn.it/event/28762/contributions/146408/attachments/87284/116576/20211121 ALCOR4EIC.pdf

Punti per discussione / "desiderata" / requirements / misure da fare per ALCOR

- test operations at 98 MHz * 3 and 98 MHz * 4
- shutter a 1 ns + time alignment
- timing: misure caratterizzazione risoluzione intrinseca + σ < 100 ps?
- bandwidth improvements?
- 64 ch + packaging
- [...]