

ECAL Crystal simulation in DD4HEP

Flavia Cetorelli², Marco Lucchini^{1,2}

- 1. Università degli Studi di Milano Bicocca
- 2. INFN Milano-Bicocca

14/02/2023

IDEA detector

IDEA detector for future e+e- circular colliders:

- sampling fiber calorimeter exploiting the dual-readout of scintillation and Cherenkov light
 → excellent energy resolution for hadrons and jets
 → BUT moderate energy EM resolution
- segmented homogeneous dual-readout crystal calorimeter (SCEPCal) <u>2020 JINST 15 P11005</u>
 - \rightarrow improve the resolution to EM particles to $\frac{3\%}{\sqrt{E}}$
 - transverse and longitudinal segmentation → optimized to give useful info to DR particle flow algorithms
 - + timing layers → time resolution ~20 ps for both
 MIPs and EM showers

State of the art

Studies on particle flow using hybrid segmented crystal and fiber dual-readout calorimeter:

- standalone 4π Geant4 simulation, do not include a full tracker description;
- DR-oriented **particle flow** algorithm.

More details in: 2022 JINST 17 P06008

→ Sensible improvement in jet resolution using dual-readout information combined with particle flow \rightarrow **3-4%** for jet energies above 50 GeV

Goal of the fellowship

- ★ Integrate the crystal DR calorimeter option in the Full Simulation of the IDEA detector and validate the simulation tool:
 - integration in the key4Hep framework to allow the long-term use and maintenance of the software
 - **DD4HEP** -- the crystal calorimeter geometry
 - **edm4hep** -- data model for the event reconstruction

After validation of this simulation tool:

- working on a **dedicated particle flow algorithm**, using both the information from dual-readout and from the SCEPCal
- possibility to study the impact of an improved energy resolution on physics program of FCC-ee:
 - CP violation studies through B0 meson decays
 - BSM studies for Axion Like Particles (ALPs)

EM crystal calo radial envelopes: baseline

Plans

• Implementation of the **SCEPCal in DD4HEP**:

- Coordinate with the US community within the CalVision project, we are in contact with Wonyong Chung (Princeton)
 - ongoing implementation of the geometry of the detector
 - reconstruction and validation still to be performed
 - in touch to understand where we can help.
- Towards the integration of SCEPCal in the IDEA detector:
 - tracker system, coordinate with the simulation of the drift chamber (geometry in DD4HEP implemented, should have flexible radial envelope to adapt to the 2 scenario w and w/o SCEPCal, reconstruction still missing → Lorenzo Capriotti)
 - **dual readout fiber calorimeter**, coordinate with korean group and a student from Sussex
- Working on the **validation of a full simulation** dataset, that could be used to develop dedicated **dual-readout particle flow algorithms** using machine learning techniques (Adelina D'Onofrio)

Backup

Baseline radial envelopes

- ★ Silicon pixel vertex detector (MAPS):
 - \circ R = 1.7 34 cm
- \star Drift chamber:
 - R = 35 200 cm
- ★ Si wrapper (micro-strip layer)
 - R = 200 210 cm
- ★ Thin Solenoid (2T, 0.7X0)
 - \circ R = 210 240 cm
- **\star** Pre-shower (µRwell behind absorber)
 - \circ R = 240 250 cm
- ★ Dual readout calorimeter
 - \circ R = 250 450 cm
- **\star** Muon chambers (µRwell)
 - \circ R = 450 560 cm

Overview

It's a global cost-performance optimization of the full detector

Option	DC outer radius [cm]	Crystal inner radius [cm]	Solenoid inner radius [cm]	Fiber calo inner radius [cm]	Approx crystal volume* [m³]
No crystals	200	-	210	250	-
Previous sim	175	185	220	250	14.0
New baseline	190	200	230	260	17.2

Note: crystal calo is about $1\lambda_I$ so we could reduce the length of the fiber calo * Crystal calo cost is 80% driven by crystal volume, volume ~ $R^{1.65}$

Conceptual layout

- Transverse and longitudinal segmentation optimized for particle identification and particle flow algorithms
- Exploiting SiPM readout for contained cost and power budget

Marco Lucchini

