PMT <u>Reconstruction</u> & <u>Analysis</u>

Cygno reco and analysis meeting - 2/2/2022

David Marques A. Messina S. Piacentini F. Borra

Team

- → For the moment...
 - David Marques (Ph.D. L'Aquila)
 - Stefano Piacentini (Post-Doc Sapienza)
 - Andrea Messina (Professor / Researcher Sapienza)
 - Francesco Borra (soon to become CYGNO-intern)
- → "Honorable mentions":
 - Rafael Nobrega & Mariana (PMT Simulation)
 - Giovanni Mazzitelli (PMT DAQ-related)

If someone would like to join,

please let us know!

We met last week in Sapienza and discussed the **main tasks** to carry,

work-division and final goals.

- 1. (L,x,y) study aka find alpha [Stefano; Francesco]
 - a. Measure the **dependence of light** collected by PMTs with angle of incidence $\rightarrow L(R) \propto R^{\alpha}$
 - i. Use this information to deduce ⁵⁵Fe spots' (x,y) coordinates.
 - ii. Cross-check with camera.

- 1. (L,x,y) study aka find alpha [Stefano; Francesco]
 - a. Measure the **dependence of light** collected by PMTs with angle of incidence $\rightarrow L(R) \propto R^{\alpha}$
 - i. Use this information to deduce ⁵⁵Fe spots' (x,y) coordinates.
 - ii. Cross-check with camera.
- 2. <u>PMT reconstruction</u> [David; Francesco]
 - a. Read data (recently done by Giovanni \rightarrow PMT libraries).
 - b. Build a **reconstruction for the PMT** as it exists for the camera.
 - i. Create a tree with basic **waveform variables** [Mostly David]
 - ii. Introduce less basic peak variables → **Peak analyser** [Mostly Francesco]

- 1. (L,x,y) study aka find alpha [Stefano; Francesco]
 - a. Measure the **dependence of light** collected by PMTs with angle of incidence $\rightarrow L(R) \propto R^{\alpha}$
 - i. Use this information to deduce ⁵⁵Fe spots' (x,y) coordinates.
 - ii. Cross-check with camera.
- 2. <u>PMT reconstruction</u> [David; Francesco]
 - a. Read data (recently done by Giovanni \rightarrow PMT libraries).
 - b. Build a **reconstruction for the PMT** as it exists for the camera.
 - i. Create a tree with basic waveform variables [Mostly David]
 - ii. Introduce less basic peak variables \rightarrow **Peak analyser** [Mostly Francesco]
- 3. Integration with camera reconstruction \rightarrow <u>To be discussed!</u>

- 1. (L,x,y) study aka find alpha [Stefano; Francesco]
 - a. Measure the **dependence of light** collected by PMTs with angle of incidence $\rightarrow L(R) \propto R^{\alpha}$
 - i. Use this information to deduce ⁵⁵Fe spots' (**x**,**y**) coordinates.
 - ii. Cross-check with camera.
- 2. <u>PMT reconstruction</u> [David; Francesco]
 - a. Read data (recently done by Giovanni \rightarrow PMT libraries).
 - b. Build a **reconstruction for the PMT** as it exists for the camera.
 - i. Create a tree with basic waveform variables [Mostly David]
 - ii. Introduce less basic peak variables \rightarrow **Peak analyser** [Mostly Francesco]
- 3. Integration with camera reconstruction \rightarrow <u>To be discussed!</u>

- ★ Correction tables for PMT waveforms
 - Already ~finished
- Automatic focalization/alignment

Git repository already set up :)

Tasks - 1. (L,x,y)

C/GNO G S Experiment S I

- → (L,x,y) study aka find alpha [Stefano; Francesco]
 - We went to Frascati and used the "laser setup".
 - Scanned various angles on light incidence.
 - Calculated the relative light intensity.

Tasks - 1. (L,x,y)

- → (L,x,y) study aka find alpha [Stefano; Francesco]
 - We went to Frascati and used the "laser setup".
 - Scanned various angles on light incidence.
 - Calculated the relative light intensity.

→ Found a <u>cos</u> dependence (as

expected), but not a <u>cos</u>² dependence.

- → Work/analysis in progress.
- Better results coming soon!

- → PMT reconstruction [David; Francesco]
 - Objective: Reconstruct basic properties of PMT waveforms, similarly to the camera

Tasks - 2. PMT Reconstruction

PMTReco.root -> TTree *Events():

- → Trigger
 - Run
 - Pic
 - 4 *waveforms* (for each ch)
 - RMS & Baseline ⇒ build pedestal(μ,σ) ⇒
 ped(baseline,RMS) ⇒ from average of first X points
 - Total integral/charge
 - Max voltage
 - (bol) If saturated or not
 - Number of structures
 - For peak_i:
 - Peak_charge
 - \circ t_start & t_end \Rightarrow build peak_width; peak_position
 - V_max within t_width
 - \circ [more complicated] #local maxima ⇒ build
 - substructures \Rightarrow repeat previous steps.

→ <u>PMT reconstruction</u> [David; Francesco]

 Objective: Reconstruct basic properties of PMT waveforms, similarly to the camera

Tasks - 2. PMT Reconstruction

PMTReco.root -> TTree *Events():

- → Trigger
 - 🔶 Run
 - Pic
 - 4 *waveforms* (for each ch)
 - RMS & Baseline ⇒ build pedestal(μ,σ) ⇒
 ped(baseline,RMS) ⇒ from average of first X points
 - Total integral/charge
 - Max voltage
 - (bol) If saturated or not
 - Number of structures
 - For peak_i:
 - Peak_charge
 - \circ t_start & t_end \Rightarrow build peak_width; peak_position
 - V_max within t_width
 - [more complicated] #local maxima ⇒ build
 - substructures \Rightarrow repeat previous steps.

→ <u>PMT reconstruction</u> [David; Francesco]

 Objective: Reconstruct basic properties of PMT waveforms, similarly to the camera

<u>Technicalities</u>

Find separated above noise structures:

- 1. Filter (mov. average ; FFT ; others)
- 2. Define t_start & t_end
 - a. thr ~ 3*RMS (typical)
 - b. # consecutive samples > thr_h \Rightarrow t_start
 - c. # consecutive samples < thr_l \Rightarrow t_end
 - i. ~3 samples good because
 - P(3 consec. samples > 3*RMS) << 1

Tasks - 2. PMT Reconstruction

PMTReco.root -> TTree *Events():

- → Trigger
 - Run
 - Pic
 - 4 *waveforms* (for each ch)
 - RMS & Baseline ⇒ build pedestal(μ,σ) ⇒
 ped(baseline,RMS) ⇒ from average of first X points
 - Total integral/charge
 - Max voltage
 - (bol) If saturated or not
 - Number of structures
 - For peak_i:
 - Peak_charge
 - \circ t_start & t_end \Rightarrow build peak_width; peak_position
 - V_max within t_width
 - $\circ \qquad [more complicated] \#local maxima \Rightarrow build$
 - substructures \Rightarrow repeat previous steps.

→ <u>PMT reconstruction</u> [David; Francesco]

 Objective: Reconstruct basic properties of PMT waveforms, similarly to the camera

<u>Technicalities</u>

Find separated above noise structures:

- 1. Filter (mov. average ; FFT ; others)
- 2. Define t_start & t_end
 - a. thr ~ 3*RMS (typical)
 - b. # consecutive samples > thr_h \Rightarrow t_start
 - c. # consecutive samples < thr_l \Rightarrow t_end
 - i. ~3 samples good because

P(3 consec. samples > 3*RMS) << 1

Analyse individual structures:

- 1. Make use of py.PeakFinder()
 - a. Find variables

1200 1400

Integration with camera reconstruction \rightarrow <u>To be discussed!</u>

Integration with camera reconstruction \rightarrow <u>To be discussed!</u>

<u>1. Initial idea</u>

- → PMT is an **independent analysis** from the camera.
- → Allows for easier <u>*PMT-only* analysis</u> from different people.
- \rightarrow To be merged with camera output at the end.

Integration with camera reconstruction \rightarrow <u>To be discussed!</u>

<u>1. Initial idea</u>

- → PMT is an **independent analysis** from the camera.
- → Allows for easier <u>*PMT-only* analysis</u> from different people.
- \rightarrow To be merged with camera output at the end.

2. Other possibility

- → PMT waveforms are a <u>subset</u> of variables of a <u>camera</u> <u>picture</u>.
- → Could make the data structure complicated/complex.
- → Depends on the <u>definition of event</u>: *interaction* or *picture*?

Dav & Fra & Stef & Andr

Integration with camera reconstruction \rightarrow <u>To be discussed!</u>

<u>1. Initial idea</u>

- → PMT is an **independent analysis** from the camera.
- → Allows for easier <u>*PMT-only* analysis</u> from different people.
- \rightarrow To be merged with camera output at the end.

2. Other possibility

- → PMT waveforms are a <u>subset</u> of variables of a <u>camera</u> <u>picture</u>.
- → Could make the data structure complicated/complex.
- → Depends on the <u>definition of event</u>: *interaction* or *picture*?

Dav & Fra & Stef & Andr

What's the final goal:

- → Have a full PMT events' <u>reconstruction</u> such as the camera.
 - With this, many other **<u>analysis</u>** can be performed:
 - (L, x, y)
 - Z coordinate
 - PMT NR vs ER discrimination
 - 3D tracking
 - ...