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Summary

* Introduction: how differently?

* Multiphaseted materials and superconductivity

* Probing phases and their signatures

» Examples: phase coexistence in NbSe, and LSCO
« Conclusion: same phase... different faces




| did not come up with this title...

OF STRONG CORRELATIONS

Silke Paschen’ and Qimiao Si? - DOI: https://doi.org/10.1051/epn/2021407
1 Institute of Solid State Physics, TU Wien, Austria

2 Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, USA

There has been considerable recent progress in discovering and understanding quantum
phases and fluctuations produced by strong correlations. Heavy fermion systems are
an ideal platform for systematic studies because low and competing energy scales
make them highly tunable. As such the phases (faces) of strong correlations transform
continuously into one another.

Paschen&Si, 2021

Low energy

Physics of condensed matter
Understanding low-energy state of nucleus and electron assembly
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https://www.europhysicsnews.org/articles/epn/abs/2021/04/epn2021524p30/epn2021524p30.html

Explaining the —ly

The constructionist hypothesis breaks
down when confronted with the twin
dificulties of scale and complexity. The
behavior of large and complex
aggregates of elementary particles, it
turns out, is not to be understood in
terms of a simple extrapolation of the
properties of a few particles. Instead,
at each level of complexity entirely
new properties appear, and the
understanding of the new behaviors
requires research [...] inspiration and
creativity to just as great a degree as
in the previous one.

4 August 1972, Volume 177, Number 4047

More Is Different

Broken symmetry and the nature of

the hierarchical structure of science.

The reductionist hypothesis may still
be a topic for controversy among phi-
losophers, but among the great majority
of active scientists I think it is accepted
without question. The workings of our
minds and bodies, and of all the ani-
mate or inanimate matter of which we
have any detailed knowledge, are as-
sumed to be controlled by the same set
of fundamental laws, which except
under certain extreme conditions we
feel we know pretty well.

It seems inevitable to go on uncrit-
ically to what appears at first sight to
be an obvious corollary of reduction-
ism: that if everything obeys the same
fundamental laws, then the only sci-
entists who are studying anything really
fundamental are those who are working
on those laws. In practice, that amounts
to some astrophysicists, some elemen-
tary particle physicists, some logicians
and other mathematicians, and few

P. W. Anderson

planation of phenomena in terms of
known fundamental laws, As always, dis-
tinctions of this kind are not unambiguous,
but they are clear in most cases. Solid
state physics, plasma physics, and perhaps
also biology are extensive. High energy
physics and a good part of nuclear physics
are intensive. There is always much less
intensive research going on than extensive.
Once new fundamental laws are discov-
ered, a large and ever increasing activity
begins in order to apply the discoveries to
hitherto unexplained phenomena. Thus,
there are two dimensions to basic re-
search. The frontier of science extends all
along a long line from the newest and most
modern intensive research, over the ex-
tensive research recently spawned by the
intensive research of yesterday, to the
broad and well developed web of exten-
sive research activities based on intensive
research of past decades.

The effectiveness of this message may
be indicated by the fact that I heard it
quoted recently by a leader in the field
of materials science, who urged the

SCIENCE

less relevance they seem to have to the
very real problems of the rest of sci-
ence, much less to those of society.

The constructionist hypothesis breaks
down when confronted with the twin
difficulties of scale and complexity. The
behavior of large and complex aggre-
gates of elementary particles, it turns
out, is not to be understood in terms
of a simple extrapolation of the prop-
erties of a few particles. Instead, at
each level of complexity entirely new
properties appear, and the understand-
ing of the new behaviors requires re-
search which I think is as fundamental
in its nature as any other. That is, it
seems to me that one may array the
sciences roughly linearly in a hierarchy,
according to the idea: The elementary
entities of science X obey the laws of
science Y.

X Y

solid state or elementary particle

many-body physics physics
chemistry many-body physics
molecular biology chemistry
cell biology molecular biology
psychology physiology
social sciences psychology

But this hierarchy does not imply
that science X is “just applied Y.” At
each stage entirely new laws, concepts,
and generalizations are necessary, re-
quiring inspiration and creativity to just
as great a degree as in the previous one.
Psychology is not applied biology, nor
is biology applied chemistry.

Anderson, 1972



https://www.science.org/doi/10.1126/science.177.4047.393

Explaining the —ly...
Fifty years later

Strongly correlated electron systems
host a tremendous variety of
fascinating macroscopic phenomena
[...] the essential physics of many of
these systems is still not understood,
and we do not have a overall
perspective on strong  electron
correlations. Moreover, our predictive
power for such systems is lacking.
[...] Is a unified perspective even
possible? Or is the “Anna Karenina
Principle” in effect — all non-interacting
systems are alike; each strongly
correlated  system is  strongly
correlated in its own way?

08/02/2023

The Future of the Correlated Electron Problem
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https://arxiv.org/abs/2010.00584

Multiphaseted materials
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Alexandradinata&al., 2020
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https://www.nature.com/articles/nature14165
https://arxiv.org/abs/2010.00584

The superconducting state

T <T, T >T,
Breakdown of resistivity Meissner effect Discontinuity of specific heat
P B Cy
T, T T,
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The superconducting state

Bardeen, Cooper&Schrieffer, 1957
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Ginzburg&Landau, 1950

FIyl = F + o ~ T + 5 1pl*



https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.1175

Collective modes of superconductors

* Fluctuations of the complex
order parameter
W = (Yo + 6leio+o?

* 01 amplitude or Higgs
fluctuations have mass 2A

phase or Goldstone
fluctuations are massless

* Do not miss the quasiparticle
continuum!

08/02/2023 More is differently different




°robing collective modes...

La fisica spiegata con le mani.

"Ve spiego qual e la rivoluzione piu importante de la meccanica statistica de non
equilibrio: non serve da no schiaffo in faccia ad un energumeno per sape che te

crocchia de botte. Basta guardarlo prima in faccia. Ecco, non serve perturba il
sistema pe sape come risponde, basta guarda le fluttuazioni all'equilibrio. Tutto
cio pero se rimanemo nel regime lineare, cice se lo schiaffo che je date non e
forte. Altrimenti non potete sape quello che succede, magari lo ammazzate"

o E}' 233 Commenti: 27 Condivisioni: 22

08/02/2023 More is differently different 10



Probing collective modes...
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Nicoletti&Cavalleri, 2016 Udina&al., 2019/ Udina&al., 2022
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https://arxiv.org/abs/1608.05611
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.165131
https://pubs.rsc.org/en/content/articlelanding/2022/FD/D2FD00016D

An example: NbSe,

08/02/2023

Grasset&al., 2018/ Cea&Benfatto, 2014

P (GPa)
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https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.094502
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.90.224515

An example: NbSe,
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Feng&al.,2022
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http://arxiv-export3.library.cornell.edu/abs/2211.10947

Perspective: LSCO

a Laz.xSI’ Cu04 (x ~ 0 12 T 26 K)
L 90 K

45 K

Electric field (a.u.)

15

20
Time (ps)

Feng&al.,2022
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Temperature, T (K)
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http://arxiv-export3.library.cornell.edu/abs/2211.10947

Conclusion: same phase... different faces

Supersaturation (g/m?)

Bentley, 1902
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https://iopscience.iop.org/article/10.1088/0034-4885/68/4/R03
https://en.wikipedia.org/wiki/Wilson_Bentley#/media/File:SnowflakesWilsonBentley.jpg
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