dRICH acceptance issue update

Chandradoy Chatterjee

February 1, 2023

Istituto Nazionale di Fisica Nucleare

Chandradoy Chatterjee

dRICH acceptance issue update

February 1, 2023

Outline

Recap the problem
The principles of Optics tuning
Newly tuned situation

- Acceptance
- performance
- Packup and TBD

(日) (四) (日) (日) (日)

э

Motivation

- We have observed and reported on several occasions that the dRICH acceptance has shrunk both for the gas and aerogel.
- The optics were well tuned in August 2022 and after the November 2022 campaign the acceptance went wrong.
- The cause has been identified, and reported in the last GD/I and dRICH software meeting

Optics has been recovered

Chandradoy Chatterjee

dRICH acceptance issue update

February 1, 2023

1/8

- The petals of the mirror are slices of a sphere of a given radius.
- Each sensor sector too is a section of a sensor sphere with a certain radius.
- The parameters to select these objects inside the dRICH volume take into account the geometric constraints.
- The idea is to tune these parameters to have 'best' optics possible

Couple of words on Optics tuning contd...

Slides from C.Dilks

The sensor positioning depends on the placement of the aerogel

イロト イポト イヨト イヨト

dRICH Geometry: Aerogel and the snout in particular

Geometry - Details

ePIC dRICH

Chandradoy Chatterjee

C. Dilks

dRICH acceptance issue update

February 1, 2023

< □ > < □ > < □ > < □ > < □ > < □ >

dRICH Geometry: Aerogel and the snout in particular

- The dRICH geometry has essentially three radii defining the envelope.
- At the start of the dRICH (195 cm) *rmax*0, at the end of the snout (215 cm) *rmax*1 and the cylindrical one extended up to the end (315 cm) *rmax*2.
- This *rmax*0 is also the starting size of the aerogel. Previously used as 95 cm. Later it was set to 110 cm.
- Reduces the available place for sensor placement.

< □ > < 同 > < 回 > < 回 > < 回 >

Setting back to previous aerogel size and optics retuning

We placed back the aerogel to the previous size and the optics retuning was made. Reported in **GD/I** meeting.

Chandradoy Chatterjee

dRICH acceptance issue update

February 1, 2023

Acceptance after tuning

- The Number of photons detected over different η values are restored.
- The aerogel is providing around 7-8 photons and 18 photons are coming from the gas for saturated particles.

But...

Performance of the gaseous photons at different pseudorapidity

NOT UNIFORM. We don't have optics able to provide good resolution at small, mid and large pseudorapidity.

Performance of the gaseous photons at different pseudorapidity

Figure: SPE and Ring Resolutions as a function of Pseudorapidity for 50 GeV π

Performance of the Aerogel photons at pseudorapidity 3.5

< □ > < □ > < □ > < □ > < □ > < □ >

Status and Open questions?

Where we stand now:

- Geometrical acceptance restored.
- The aerogel is set back to 95 cm, not to block available place for sensors.
- In Performance checked and expected results observed.

What should we do next and how to do?

- Dual or multi-mirror configuration? Associated difficulty in geometry description and implementation in the DD4Hep. Porting from ATHENA?
- Mirror near beam pipe to pick-up high eta photons, like pfRICH? Reconstruction will be non-trivial. AYK has standalone reconstruction in improvised IRT. Porting already that into Jana?
- Low number of photons from aerogel rings over a large perimeter. How to perform PID in real life? Increase (n-1)? Which values? What are the physics requirements?
- A well-documented database for geometrical constraints on dRICH?