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DMRadio motivation and context

DMRadio goals (see talk tomorrow by Dale Li at 10:15 am “The Dark Matter Radio
Suite of Experiments”)

DMRadio-50L as an axion detector

Status of DMRadio-50L

Conclusion



Axion parameter space covers ~10'Y mass range

e QCD axions solve the existing bounds
strong CP problem and
are a leading dark matter
candidate

e \Wave-like dark matter:
mass < 1 eV

Figure by A. Berlin and others 3



Axion parameter Space covers ~1O10 Mass range
e QCD axions solve the 10_*” existing bounds
strong CP problem and .

are a leading dark matter =

|
candidate = 107
o Wavelike dark matter: ="
mass < 1 eV S g
e Pre-inflationary axions: T

mass < 1 yeV

Figure by A. Berlin and others
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Probing QCD axions through electromagnetism

Axion field converts to an oscillating electromagnetic signal in the presence of
a magnetic field (Primakoff effect)

e Enhance signal with a tunable resonator

Proposal: Sikivie (1983)

v > 300 MHz

Cavity-based searches (ADMX, HAYSTAC,...)

Magnet

’Amplifier

Proposal: Cabrera, Thomas (2010)
v < 300 MHz

Lumped element searches (DMRadio,...)

j(w) B(w)
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DMRadio program overview

DMRadio-50L
e 5kHz-5MHz
e Quantum sensor testbed

DMRadio-m?® (PRD 106 (2022): 103008,
arXiv:2302.14084)

Primary goal: DFsz 30 MHz - 200 MHz
Secondary goal: Ksvz down to 10 MHz
Extended goal: Qcp axion band to 5 MHz
DOE DMNI
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See talk by Dale Li 10:15 am July 6
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kHz, MHz  GHz THz freq
A
peV neV peV meV mass

DMRadio program overview

DMRadio-50L Va [He]
103 104 100 106 107 108 10°

e 5kHz-5MHz 1079 SHAFT CAST
e Quantum sensor testbed . ]

DMRadio-m?® (PRD 106 (2022): 103008, 107121
arXiv:2302.14084) =

e Primary goal: DFSz 30 MHz - 200 MHz
e Secondary goal: KSVZdownto 10 MHz &
e Extended goal: aCD axion band to 5 MHz §
e DOE DMNI 10-18

DMRadio-GUT (PRD 106 (2022): 112003.)

See talk by Dale Li 10:15 am July 6
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L DFSZ 100 kHZ - 30 MHz 10 10—11 10—10 10—9 10—8 10—7 10—6 10—5
e Next-generation detector myg [eV]




DMRadio-50L detection scheme

Toroidal magnet
with field B0
creates current Jeff
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DMRadio-50L detection scheme

Toroidal magnet
with field B,

creates current Jeff

Jefr creates
magnetic field B,
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DMRadio-50L detection scheme
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with field B, magnetic field B, enhanced by an LC resonator

creates current J_ and picked up by a sensor
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DMRadio-50L detection scheme

Toroidal magnet
with field B0
creates current Jeff
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enhanced by an LC resonator
and picked up by a sensor

magnetic field B,
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DMRadio-50L design

Cryostat

Dilution refrigerator: BlueFors-LH400

Main cryostat: in construction at Four Nine Design

Still plate  MXC plate

1 K cold finger

44

20 mK
cold finger

40

11 K plate
—1 Kring

120 mK plate

»
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DMRadio-50L design

Cryostat
Detector: magnet and sheath

Dilution refrigerator: BlueFors-LH400

Main cryostat: in construction at Four Nine Design

Still plate  MXC plate

1 K cold finger
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cold finger
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Main cryostat: in construction at Four Nine Design

DMRadio-50L design

F I 7 Wings
e Cryostat 1K
e L
e Detector: magnet and sheath 5 © alk
e Receiver: LC resonator and @ g @
-— =) +
SQUID = e e 40|K
(@)} - (@)}
© ©
. . . E E
Dilution refrigerator: BlueFors-LH400
Still plate  MXC plate ‘ | | }1 Kplate
I “‘—ﬂ T T 11 Kring
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cold finger
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DMRadio-50L: under construction at Stanford

o e o
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Detector and receiver
Dilution refrigerator in CAD models.

the lab.

DMRadio-50L cryosystem CAD model. 17



DMRadio-50L cold snout needs to be flexible

Kevlar string

3 /7
3 /
\) ‘\i &

Mechanical suppoFt: puck T o .
Flexible 4 K, 40 K connections: aluminum strips

=s

I

Flexible 1 K, 20 mK connections: copper braids
Dilution refrigerator Bellows 18



Puck design

Purpose: provide mechanical support for the 1 K and 20 mK cold
fingers while keeping them thermally isolated

Capstan side Clamp side

| - Terminal capstans
(winged)

Cold finger diameter: 10 mm Mounting holes 2-stage design
Distance (edge-edge) between cold fingers: 10 mm 19



DMRadio-50L toroidal magnet
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Wire winding
e 140 grooves
e 36 winds in each groove
e Counter wound

69 wedges per half, alumina
spacers between two mandrel

halves to decrease loss
20

Aluminum mandrel



DMRadio-50L toroidal magnet infrastructure

il
Wiy
AL

Diode tower

HTS (4K-40K) G-10 rod for wire leads
4K plate

40K plate

21



DMRadio-50L toroidal magnet

v Preliminary tests with sample wedges
v Insulation on wedges
v Glueing wedges
v Winding of superconducting wire
v Cryogenic tests

Practice wedge. Practice winding on five wedges. _,



DMRadio-50L toroidal magnet

v Preliminary tests with sample wedges

v

Insulation on wedges

v Glueing wedges
v Winding of superconducting wire
v Cryogenic tests

A Magnet production

(I SR HAY WAL NI N

140 wedges are machined, arrived at SSI
First ten wedges are glued

First quarter of magnet wound

Full magnet wound

Magnet circuitry

Magnet testing

First 10 wedges.

Wedge scale.
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DMRadio-50L superconducting sheath Sheath half
/

The sheath eliminates residual fringing field
and isolates the magnet loss from the

resonator for high Q
<— Resistive

gasket

Nb sheath top
plate

Sleeve

Bracket
Gasket

| |
2p
1 |
-i'--
| |

Mandrel

Magnet and sheath interface:
connector bracket o4




DMRadio-50L sheath: gasket testing

We do not want the gasket to allow
coupling lossy materials inside the
sheath to the inductor: how much of the
poloidal current goes through the inside
of the sheath vs across the gasket?

Hope: all goes across the gasket

Measure lout/lin

lin SC sheath model
"\ Gasket
lout

Testing setup without SC shield

25



Resonator tests at Stanford: cooling and SQUID backaction

Capacitor Tunable transformer

Cooling tests to mK DR
temperatures ongoing

Attocube for tunable
transformer acquired

/41
117
il

L Ed

Will begin SQUID testing
in August

W<
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Resonator tests at Princeton: high Q goal

Optimizing Q of superconducting resonator by

studying fundamental loss mechanisms

(materials, joints, etc) Rapacitor
£
(@]
o
S Inductor
)

~ SQUID
Inductor: NbTi wire, 5N Al shield mounted inside the |
alumina rods, cryostat. Cold stage is 750 mK. - .



<> Design finalization deadline
Timeline ’ Delivery to Stanford deadline

Cold snout <> Construction q Testing

Cryostat <> Construction and testing at Four Nine Design

Magnet Construction Testing at SSI
Sheath Design <> Construction ‘
Resonator Commissioning
Inductor #1 <> Construction ‘
Fixed cap. Construction ‘
Tunable cap. <> Construction ‘
SQUID ‘Testing at Stanford
Tunable transf. q Testing
3\)\7’r25 P\)gqu 6@()\():5 Oo\?’% ) v Oeorib yo(\q’b‘ ?e\oq}‘ N Ll g 28



DMRadio-50L is an R&D platform for amplifier technology

Radio-frequency quantum
upconverters (RQUSs)
upconvert signals from ~MHz
to microwave frequencies

RQUs take advantage of
mature microwave
technologies

More info: arXiv:2210.05576
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Conclusions: DMRadio-50L

- Axion search in 20 peV - 20 neV with target sensitivity g < 5x10°"° GeV-'

- Comprised of a toroidal 1 T magnet surrounded by a superconducting sheath,
and read out by tunable LC oscillator

- Technology test bed and innovation platform for amplifiers to inform future
experiments

Expect to receive cryostat and magnet by the end of 2023, commissioning in
2024

Upcoming DMRadio collaboration talk:

- “The Dark Matter Radio Suite of Experiments” - Dr. Dale Li at 10:15 am on
Thursday, July 6th

30



Thank you!



Puck Test Assemblies

All Aluminum Brass / Aluminum Hybrid Assembly Jig

Kevlar string



SQUID chamber:

2-stage SQUID system
SQUID1 + SA

Cylindrical shield around PCB
Shells: Nb+Cryoperm+Nb

Al trace PCB is out from
fabrication

Inductor coil:
NbTi wire
Alumina horizontal rods

Al 1100 frame

Al 1100 threaded rod

Teflon screw

Tantalum washers
Transformer and injection
loops winded on Alumina rods

Circular-plate capacitor:
Separated by vacuum
Alumina washers to
separate the plates

Al 1100

Teflon screw
Tantalum washers




DMRadio - GUT

Parameter Target Value State of the Art
Magnetic field 16T ~8 T (ADMX-G2)
volume 10m° 0.1 m° (ADMX-G2)
lity Fact
Quality Factor 2x 10 ~10° (Falferi, 1998; Ulmer.
2016)
Temperature 10 mK 7 mK (commercial DRs)

Amplifier Noise

-20 dB of backaction noise reduction
below SQL

Few times SQL (dc SQUIDs,
JPAS)

Integration time

6.2 years
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