

DMRadio-50L Overview and Status Update

18th Patras Workshop on Axions, WIMPs, and WISPs Rijeka, Croatia / Trieste, Italy July 5, 2023

Maria Simanovskaia on behalf of the DMRadio Collaboration Postdoc in the Irwin Group, Stanford University

Outline

DMRadio motivation and context

DMRadio goals (see talk tomorrow by Dale Li at 10:15 am "The Dark Matter Radio Suite of Experiments")

DMRadio-50L as an axion detector

Status of DMRadio-50L

Conclusion

Axion parameter space covers ~10¹⁰ mass range

- QCD axions solve the strong CP problem and are a leading dark matter candidate
- Wave-like dark matter: mass < 1 eV

Figure by A. Berlin and others 3

Axion parameter space covers ~10¹⁰ mass range

- QCD axions solve the strong CP problem and are a leading dark matter candidate
- Wave-like dark matter: mass < 1 eV
- Pre-inflationary axions: mass < 1 µeV

Figure by A. Berlin and others 4

Probing QCD axions through electromagnetism

- Axion field converts to an oscillating electromagnetic signal in the presence of a magnetic field (Primakoff effect)
- Enhance signal with a tunable resonator

Proposal: Sikivie (1983) v > 300 MHz Cavity-based searches (ADMX, HAYSTAC,...)

Proposal: Cabrera, Thomas (2010) v < 300 MHz Lumped element searches (DMRadio,...)

DMRadio Collaboration

H.M. Cho, W. Craddock, D. Li, W. J. Wisniewski SLAC National Accelerator Laboratory

J. Corbin, C. S. Dawson, P. W. Graham, K. D. Irwin, F. Kadribasic, S. Kuenstner, N. M. Rapidis, M. Simanovskaia, J. Singh, E. C. van Assendelft, K. Wells *Department of Physics Stanford University*

A. Droster, A. Keller, A. F. Leder, K. van Bibber Department of Nuclear Engineering University of California Berkeley

S. Chaudhuri, R. Kolevatov Department of Physics Princeton University

L. Brouwer Accelerator Technology and Applied Physics Division Lawrence Berkeley National Lab

B. A. Young Department of Physics Santa Clara University J. W. Foster, J. T. Fry, J. L. Ouellet, K. M. W. Pappas, C. P. Salemi, L. Winslow Laboratory of Nuclear Science Massachusetts Institute of Technology

R. Henning Department of Physics University of North Carolina Chapel Hill Triangle Universities Nuclear Laboratory

Y. Kahn Department of Physics University of Illinois at Urbana-Champaign

A. Phipps California State University, East Bay

B. R. Safdi Department of Physics University of California Berkeley

DMRadio program overview

DMRadio-50L

- 5 kHz 5 MHz
- Quantum sensor testbed

DMRadio program overview

DMRadio program overview

Toroidal magnet with field B_0 creates current J_{eff}

Toroidal magnet with field B_0 creates current J_{eff}

 J_{eff} creates magnetic field B_a

 J_{eff} creates magnetic field B_a

 B_{a}

 B_a induces I_{ret} which is enhanced by an LC resonator and picked up by a sensor

ret

B₀

eff

Toroidal magnet with field B₀ creates current J_{eff} J_{eff} creates magnetic field B_a

 ${\rm B_a}$ induces ${\rm I_{ret}}$ which is enhanced by an LC resonator and picked up by a sensor

Main cryostat: in construction at Four Nine Design

Main cryostat: in construction at Four Nine Design

DMRadio-50L design

- Cryostat
- Detector: magnet and sheath
- Receiver: LC resonator and SQUID

Dilution refrigerator: BlueFors-LH400

DMRadio-50L: under construction at Stanford

DMRadio-50L cryosystem CAD model.

DMRadio-50L cold snout needs to be flexible

Puck design

Purpose: provide mechanical support for the 1 K and 20 mK cold fingers while keeping them thermally isolated

Clamp side

Terminal capstans (winged) 2-stage design Mounting holes

Cold finger diameter: 10 mm Distance (edge-edge) between cold fingers: 10 mm

DMRadio-50L toroidal magnet

- 1 T peak field: ~140 A
- Superconducting Systems Inc

Wire winding

- 140 grooves
- 36 winds in each groove
- Counter wound

69 wedges per half, alumina spacers between two mandrel halves to decrease loss

DMRadio-50L toroidal magnet infrastructure

DMRadio-50L toroidal magnet

- Preliminary tests with sample wedges \checkmark
 - Insulation on wedges \checkmark
 - Glueing wedges \checkmark
 - Winding of superconducting wire \checkmark
 - Cryogenic tests \checkmark

Practice wedge. Practice winding on five wedges. 22

DMRadio-50L toroidal magnet

- Preliminary tests with sample wedges
 - ✓ Insulation on wedges
 - ✓ Glueing wedges
 - Winding of superconducting wire
 - ✓ Cryogenic tests

Magnet production

- ✓ 140 wedges are machined, arrived at SSI
- ✓ First ten wedges are glued
- □ First quarter of magnet wound
- Full magnet wound
- Magnet circuitry
- Magnet testing

First 10 wedges.

Wedge scale.

DMRadio-50L superconducting sheath

The sheath eliminates residual fringing field and isolates the magnet loss from the resonator for high Q

Magnet and sheath interface: connector bracket

DMRadio-50L sheath: gasket testing

We do not want the gasket to allow coupling lossy materials inside the sheath to the inductor: how much of the poloidal current goes through the inside of the sheath vs across the gasket?

Hope: all goes across the gasket

Measure lout/lin

Testing setup without SC shield

Resonator tests at Stanford: cooling and SQUID backaction

Cooling tests to mK DR temperatures ongoing

Attocube for tunable transformer acquired

Will begin SQUID testing in August

Resonator tests at Princeton: high Q goal

Optimizing Q of superconducting resonator by studying fundamental loss mechanisms (materials, joints, etc)

Inductor: NbTi wire, alumina rods,

5N AI shield mounted inside the cryostat. Cold stage is 750 mK.

DMRadio-50L is an R&D platform for amplifier technology

Radio-frequency quantum upconverters (RQUs) upconvert signals from ~MHz to microwave frequencies

RQUs take advantage of mature microwave technologies

More info: arXiv:2210.05576

Conclusions: DMRadio-50L

- Axion search in 20 peV 20 neV with target sensitivity $g_{avv} < 5x10^{-15} \text{ GeV}^{-1}$
- Comprised of a toroidal 1 T magnet surrounded by a superconducting sheath, and read out by tunable LC oscillator
- Technology test bed and innovation platform for amplifiers to inform future experiments
- Expect to receive cryostat and magnet by the end of 2023, commissioning in 2024

Upcoming DMRadio collaboration talk:

- "The Dark Matter Radio Suite of Experiments" - Dr. Dale Li at 10:15 am on Thursday, July 6th

Thank you!

Puck Test Assemblies

All Aluminum

Brass / Aluminum Hybrid

Assembly Jig

Kevlar string

Resonator testing apparatus components at Princeton

SQUID chamber:

- 2-stage SQUID system
- SQUID1 + SA
- Cylindrical shield around PCB
- Shells: Nb+Cryoperm+Nb
- Al trace PCB is out from fabrication

Inductor coil:

- NbTi wire
- Alumina horizontal rods
- Al 1100 frame
- Al 1100 threaded rod
- Teflon screw
- Tantalum washers
- Transformer and injection loops winded on Alumina rods

Circular-plate capacitor:

- Separated by vacuum
- Alumina washers to separate the plates
- AI 1100
- Teflon screw
- Tantalum washers

DMRadio - GUT

Parameter	Target Value	State of the Art
Magnetic field	16 T	~8 T (ADMX-G2)
Volume	10 m ³	~0.1 m ³ (ADMX-G2)
Quality Factor	2 x 10 ⁷	~10 ⁶ (Falferi, 1998; Ulmer,
		2016)
Temperature	10 mK	7 mK (commercial DRs)
Amplifier Noise	-20 dB of backaction noise reduction below SQL	Few times SQL (dc SQUIDs, JPAs)
Integration time	6.2 years	