First Results from the LUX-ZEPLIN Dark Matter Experiment

PATRAS 2023 Jim Dobson* for the LZ Collaboration

* STFC Ernest Rutherford Fellow, King's College London

Direct detection of Dark Matter

Standard Halo Model

- Isothermal sphere of DM, $\rho \propto r^{-2}$
- Local density $\rho_0 \sim 0.3$ GeV/cm3
- Maxwellian (truncated) velocity distribution
- Characteristic velocity v₀=220 km/s → non-relativistic!

Direct detection of Dark Matter

km/s \rightarrow non-relativistic!

Liquid Xenon Time Projection Chambers

Liquid Xenon Time Projection Chambers

Background suppression in LXe-TPC

3D position: σ_{xy} = O(cm), σ_{z} ~ O(mm) \rightarrow fiducialisation + single-scatter ID

Background suppression in LXe-TPC

3D position: σ_{xy} = O(cm), σ_{z} ~ O(mm) \rightarrow fiducialisation + single-scatter ID

Self-shielding: here showing low-energy neutron **single scatters**

Background suppression in LXe-TPC

3D position: σ_{xv} = O(cm), σ_{z} ~ O(mm) \rightarrow fiducialisation + single-scatter ID

LZ WIMP Sensitivity paper: Phys.Rev.D 101 (2020) 5, 052002

Leading technology above a -few GeV

ZEPLIN-III

12 kg (7 kg)

2008

 10^{-40}

 10^{-41}

10-42

 10^{-43}

 10^{-44}

10⁻⁴⁵

10⁻⁴⁶

 10^{-47}

 10^{-48}

2000

Spin Independent Cross Section (cm²)

62 kg (34 kg)

2013

2005

LUX

250 kg (100 kg)

2016

Liquid Xe Liquid Ar

Cryogenic

LUX LUX

2015

circa 2021

2010

Year

Inorganic Crystal

Superheated fluid

PANDAX-II

2017

XENON1T

2,000 kg (1,042 kg) 2018 LUX-ZEPLIN

jim.dobson@kcl.ac.uk – 18th PATRAS - 3/7/23 7,000 kg (5,600 kg)

2020

LZ (LUX-ZEPLIN) Collaboration, 37 Institutions

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney

US

- University of Texas at Austin
- University of Wisconsin, Madison
 - UK Portugal Korea Australia

LZ Collaboration Meeting University Of Maryland 5th-7th January 2023

Thanks to our sponsors and participating institutions!

250 scientists, engineers, and technical staff

jim.dobson@kcl.ac.uk – 18th PATRAS - 3/7/23

S Institute for

Basic Science

The LUX-ZEPLIN Detector

Multi-detector active veto system

Optically separated Xe **Skin** detector + Outer Detector (**OD**) with 17 tonnes of Gd-doped LS \rightarrow <u>BG suppression and in-situ characterisation</u>

Multi-detector active veto system

Optically separated Xe **Skin** detector + Outer Detector (**OD**) with 17 tonnes of Gd-doped LS \rightarrow <u>BG suppression and in-situ characterisation</u>

Multi-detector active veto system

Optically separated Xe **Skin** detector + Outer Detector (**OD**) with 17 tonnes of Gd-doped LS \rightarrow <u>BG suppression and in-situ characterisation</u>

Backgrounds, backgrounds, backgrounds

1) Ultra-radio pure materials and construction

Radiopurity is key:

- → Xe purification with chromatography
- → Extensive radioassay campaign > 1000 assays
- → Strict cleanliness controls

See Eur. Phys. J.C 80 (2020) 11

3) Run until background limited jim.dobson@kcl.ac.uk – 18th PATRAS - 3/7/23

Backgrounds, backgrounds, backgrounds

1) Ultra-radio pure materials and construction

2) Take 1 n undergrou

Projected backgrounds: 5.6 ton fiducial, 1000 live-days ~1.5 - 6.5 keV, single scatters, no coincident veto

Background Source	ERs	NRs	
Detector Components	9	0.07	
Dispersed Radionuclides — Rn, Kr, Ar	819	_	
Laboratory and Cosmogenics	5	0.06	
Surface Contamination and Dust	40	0.39	
Physics Backgrounds — 2β decay, neutrinos*	322	0.51	
Total (after 99.5% discrimination and 50% NR efficiency) * not including ⁸ B and hep	6.	49)0 a:

See Eur. Phys. J.C 80 (2020) 11

3) Run until background limited jim.dobson@kcl.ac.uk – 18th PATRAS - 3/7/23

LUX-ZEPLIN Construction - a few highlights

Bottom PMT array after assembly at Brown University

2018

HV grids production at SLAC, see <u>Nucl.Instrum.Meth.A</u> <u>1031 (2022) 165955</u>

LUX-ZEPLIN Construction - a few highlights

Completed outer detector tank at Reynolds Polymer Technology - USCB

Offsite Kr removal of 10 tonnes of LXe at SLAC

TPC Assembly at SURF surface laboratory

2019

Mating of the extraction region to central TPC

Fully assembled TPC at SURF surface lab

Dust and Rn exposure control critical \rightarrow assembly in Rn-reduced surface lab cleanroom

jim.dobson@kcl.ac.uk – 18th PATRAS - 3/7/23

2019

Moving to the Davis Campus

202 I

TPC inside inner cryostat vessel (ICV) being transported underground

2021

ICV being lowered into the outer vessel inside the water tank

Fully assembled 1 mile UG in Davis Campus

2021

Fully assembled detector

- OD ready for GdLS + water fill (at same time)

Fully assembled 1 mile UG in Davis Campus

2021

Fully assembled detector

- OD ready for GdLS + water nin (at same time)

Detector state and stability

Gas extraction field of 7.3 kV/cm (~60 phd/extracted electron)

193 V/cm between cathode-gate (951 µs drift time)

Composite overlay courtesy of Nicolas Angelides, Imperial

Detector state and stability

Gas extraction field of 7.3 kV/cm (~60 phd/extracted electron)

Liquid-level stable within 10 µm

Xe continuously purified through hot
 193 V/cm b Zirconium getter → 3.3 tonnes/day to
 catho remove electronegative impurities

(951 µs drift time)

LXe: 174.1 K and 1.791 bar(a) [stable within 0.2%]

Composite overlay courtesy of Nicolas Angelides, Imperial

Light and Charge collection

Xe microphysics \rightarrow light and charge signals are anti-correlated:

$$E = W \cdot (rac{S1_c}{g1} + rac{S2_c}{g2})$$

Where:

g1 = photon detection efficiency

g2 = electron gain phd/e-

W = work function = 13.5 eV/quanta

Detector response - monoenergetic sources

- Noble Element Scintillation Technique (NEST) 2.3.7
- Tuned to reconstruct ER mono-energetic sources:
 - ^{83m}Kr (41.5 keV)
 - ^{129m}Xe (236 keV)
 - ^{131m}Xe (164 keV)
- Detector (g1, g2) and Xe response parameters varied

Detector response - ER/NR bands

- NEST simultaneously tuned to reproduce ER band mean and widths
- Tuned parameters propagated into NR model
- Consistent at 1% with neutron calibration data (DD and AmLi)

Fitted det. parameters: $g_1 = 11.4\%$ and $g_2 = 47.1$ phd/liquid electron

Science Run 1 (SR1)

23rd December 2021 to 11th May 2022

Remove DAQ deadtime (3%), anomalous trigger rates (7%) \rightarrow 89 live-days left

Time hold-off following large S2s

Time hold-off following large S2s

Time hold-off following large S2s

SR1 WIMP-search data before analysis cuts

60 live-days and 5.5 tonne fiducial volume cut

SR1 WIMP-search data before analysis cuts

60 live-days and 5.5 tonne fiducial volume cut

Nuclear Recoil Efficiency - all cuts

- DD neutron data to evaluate trigge and reconstruction efficiency
- CH3T for S1-cuts
- AmLi(S2) + CH3T(S1) for S2-cuts
- 50% signal efficiency at 5.5 keV

WIMP-search events surviving all cuts

60 live-days and 5.5 tonne fiducial volume cut

WIMP-search events surviving all cuts

60 live-days and 5.5 tonne fiducial volume cut

= inside FV;
 = outside F
 × = vetoed by skin;
 = vetoed by OD

WIMP-search events surviving all cuts

60 live-days and 5.5 tonne fiducial volume cut

= inside FV;
= outside F
× = vetoed by skin;
= vetoed by OD

Backgrounds: pre-and post-fit

- Profile likelihood fit (in S1 vs S2 observable space)
- Pre-constraints on BGs (high-energy sideband, mass spec, OD tagged)

Source	Expected Events	Fit Result
β decays + Det. ER	215 ± 36	222 ± 16
$ u { m ER} $	27.1 ± 1.6	27.2 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.1 ± 2.4	15.2 ± 2.4
${}^8\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
³⁷ Ar	[0, 288]	$52.5^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}~{ m WIMP}$	-	$0.0^{+0.6}$
Total	_	333 ± 17

"Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment" (11/2022), arxiv/2211.17120

Backgrounds: pre-and post-fit

- Profile likelihood fit (in S1 vs S2 observable space)
- Pre-constraints on BGs (high-energy sideband, mass spec, OD tagged)

"Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment" (11/2022), arxiv/2211.17120

Spin-independent WIMP-nucleon

- Data consistent with the background-only hypothesis
- 2-sided PLR test statistic with power constraint (-1σ)

"First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment" (07/2022) (arxiv/2207.03764)

Spin-independent WIMP-nucleon

- Data consistent with the background-only hypothesis
- 2-sided PLR test statistic with power constraint (-1σ)

"First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment" (07/2022) (arxiv/2207.03764)

Not just WIMPs

ER band searches: mirror dark matter, ALPs, hidden photons

Phys.Rev.D 104, 092009, 2021

Not just WIMPs

ER band searches: mirror dark matter, ALPs, hidden photons

Phys.Rev.D 104, 092009, 2021

Not just WIMPs

Not just WIMPs

ER band searches: mirror dark matter, ALPs, hidden photons

Phys.Rev.D 104, 092009, 2021

Not just WIMPs ER band searches: mirror dark matter, ALPs, hidden photons Phys.Rev.D 104, 092009, 2021 4.50 High energy NR/EFT (up to 400 keV) 45 keV 4.25 0vββ (2.45 MeV/0.83 MeV) and 2vDEC (2.86 MeV) 4.00 ([bhd]) 3.22 3.20 3.20 3.20 Phys. Rev. C 102, 014602, 2020 and Phys. Rev. C 104, 3.25 065501 202 3.00 0.9 keV. 2.9 keV. 7.4 keVer 5.1 keV. 5 keV... 15 keVnr 25 keVm 35 keVnr 2.75 30 40 50 70 0 10 20 60 80 S1c [phd] 8B CEvNS; SN neutrinos

Not just WIMPs

ER band searches: mirror dark matter, ALPs, hidden photons

Phys.Rev.D 104, 092009, 2021

Not just WIMPs

ER band searches: mirror dark matter, ALPs, hidden photons

Phys.Rev.D 104, 092009, 2021

XLZD - a next-generation LXe observatory

- Consortium of XENON, LUX-ZEPLIN & DARWIN \rightarrow MOU July 2021
- Explore electro-weak parameter space to neutrino fog in the 2030s

jim.dobson@kcl.ac.uk – 18th PATRAS - 3/7/23

https://xlzd.org

40-80t

A broad range of physics with 300+ tonne.years

• LZ has released leading WIMP constraints with 60 live-days

- LZ has released leading WIMP constraints with 60 live-days
- Now collecting data towards 1000 live-days → exploring new parameter space
- Watch this space for WIMP & other BSM searches

- LZ has released leading WIMP constraints with 60 live-days
- Now collecting data towards 1000 live-days → exploring new parameter space
- Watch this space for WIMP & other BSM searches
- Momentum building for XLZD next-gen LXe observatory (<u>https://xlzd.org</u>)

- LZ has released leading WIMP constraints with 60 live-days
- Now collecting data towards 1000 live-days → exploring new parameter space
- Watch this space for WIMP & other BSM searches
- Momentum building for XLZD next-gen LXe observatory (<u>https://xlzd.org</u>)

Thanks to our sponsors and 37 participating institutions!

Science and Technology Facilities Council

U.S. Department of Energy Office of Science Fundação para a Ciência e a Tecnologia

Backups - SD results

Spin-dependent WIMP-p(n)

- Structure functions from Hoferichter et al [Phys. Rev. D 102, 074018 (2020)]
- Gray band \rightarrow uncertainty from range of theory models

