

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

WISPFI-E: WISP searches on a Fiber Interferometer under the application of an Electric field

Working Group: J. M. Batllori, Y. Gu, D. Horns, M. Maroudas, J. Ulrichs

WISPFI's experiment

Background & Motivation

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

- Interferometric detection principle has been introduced by [1] for a Michelson-type interferometer.
- Novel table-top experiment focusing on photon-axion conversion in a waveguide by measuring photon disappearance in the presence of a strong external B field.
- Mach-Zehnder interferometer with the sensing arm inside the magnetic field. Expected signal: amplitude reduction & phase shift.
- Light guiding over long distances & resonant detection at a specially-confined region inside the bore of a strong magnet.
- No dependence on the local DM density.

Axion conversion probability scales with:

Axion-Photon conversion probability

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

• The photon-to-axion conversion probability from the linearization of the Klein-Gordon Eqn. [2] is:

$$P_{\gamma \to a} = \sin^2(2\theta) \sin^2(\pi L/L_{osc}) \text{ where } Tan(2\theta) = 2\omega \frac{g_{a\gamma\gamma}B}{k_{\gamma}^2 - k_a^2}$$

• Maximum conversion occurs to large energy ω or resonance conversion when $k_{\gamma} = k_a$. The expected mixing angle is $\theta = 45^{\circ}$. The axion mass in resonance corresponding to a mode propagating in a medium with n_{eff} is:

$$m_a = \omega \sqrt{1 - n_{eff}^2}$$
. $n_{eff} < 1$ needed!

• Focusing then on at or close to the resonant conversion and under the assumption of $P_{\gamma \to a} <<1$ the resulting probability in terms of B-field and fiber length is:

$$P_{\gamma \to a} \approx 10^{-18} \left(\frac{g_{a\gamma\gamma}}{10^{-12} GeV^{-1}} \right)^2 \left(\frac{B}{10 T} \right)^2 \left(\frac{L}{200m} \right)^2$$
 Energy (ω) independent

Hollow-CoreCLUSTER OF EXCELLENCEPhotonic Crystal Fibers (HC-PCF)QUANTUM UNIVERSE

Images of HC-PCF (HC-1550) taken from NKT Photonics

- **Definition:** Fibers with a characteristic structure of a hollow-core surrounded by a periodic array of air-holes that to creation of a photonic-bandgaps and allows for confinement of light in the hollow core.
- Effective mode index: The creation of a photonic-bandgap makes light to be guided through the hollow core by an air-guiding mechanism. Therefore, n_{eff} can be $n_{eff} \leq 1$ (direct relation to the phase velocity of the guided mode).
- **Applications:** Optical communications, gas sensing,...

QMED: Photon-axion mixing

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

The axion-photon couplings and g_{aAB} predicted in scenarios based g_{aBB} upon modified Quantum-Electromagnetodynamics (QEMD) have not been exploited so far (Sokolov, 2022). By attaching electrode strips to the HC-PCF, it is possible to probe the photon-axion conversion under the application and modulation of strong electric fields.

Simulation of the E-field

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

The application of an E-field of ~ 5 MV/m will allow to achieve sensitivity levels comparable to those of conventional searches conducted with external magnetic fields of the order of ~ 14T. The maximum estimated electric field at the center of the hollow-core (5 μ m) is E ~ 50 MV/m, equivalent to a B ~ 140 T!

Preliminary sensitivity

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

The WISPFI-E's experimental setup is based on a partial free-space MZI with the sensing arms implemented by waveguides that can be easily coiled around an electrode. The electric field is modulated at a fixed frequency (~kHz-MHz).

