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For haloscopes, "1, d + V

Cavity haloscopes are slow at high
frequencies.

Typically, |/ ~u 1/ —3
Decouple volume from resonant frequency:
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fundamental (TM, )
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arbitrarily (in principle) in TM,,,-like mode still supported!
other dimensions
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Volume-filling,
tunable




Tunable volume-filling cavities with V > 10023
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A prototype tunable thin-shell cavity ( V = 4023)
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Tuning by moving the “wedge”

Patras 18, Rijeka

Top view:

Resonant cavity formed by
an inner wedge and an
outer shell.

Tunable gap width sets
T™,,, frequency.
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First prototype , W ~2.0 cm

Readout
antenna
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Identifying the TM, -like mode

Measured with
Simulation foam disk

|E| (arb. units)

The second-lowest mode. Allows us to be
confident that we have indeed found the
TM010-Iike mode.

|E| (arb. units)

Lowest frequency mode. Identified in
simulation as TM,, -like based on polarization.
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The effect of misalignment

Measured with
Simulation foam disk

C':') 12.5 arcmin

|E| (arb. units) |E| (arb. units)

Co10 = 0.57 Co10 = 0.32

(simulated) (simulated)
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Alignment affects form factor.

We can’'t measure wedge position
when it's in a fridge.

>
Fortunately, misalignment perturbs the ¢
>
resonant frequency: 54
Top view: L
Misalignment creates a
larger gap width
= Lower resonant frequency
Eom )
P
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Mode Map

Wedge Position

(Horizontal stripes are now-eliminated VNA artifacts)
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Five DoF alignment based on
Nelder-Mead optimization that
only uses S,, measurements
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Near-term Dark Photon Exclusion Forecasts
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Projected limits for the current warm run and planned
cold run, 1 month of uptime.
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Warm | Cold
fo(GHz) | 74 -8 | 5.5 -7
V(L) 2.5 6
Q 5000 20000
Tsys (K) 300 0.4

Plot used code and data from:

https://cajohare.github.io/AxionLimits/
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https://cajohare.github.io/AxionLimits/

Next Steps - Triple Wedge Prototype

e Fabricated, now being assembled using precision

metrology.
e The three wedges move together, so there remains

only five parameters to align.
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ADMX Insert
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https://cajohare.github.io/AxionLimits/

Conclusions

e ADMX-VERA uses novel geometries which decouple volume from frequency
in haloscopes, allowing for feasible designs from 4 GHz to tens of GHz
potentially with a volume of 102 - 10° cubic wavelengths.

e Resonance, tuning, and alignment have been shown at room temperature.

e A warm dark photon search is underway, to be followed by a larger cryogenic
run.

e Testing of higher volume enhancement cavities underway.
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The dark blue corresponds to a conservative projection reaching KSVZ. The parameters are as follows.

Acquisition live time: 1 month at 80% uptime
Frequency range: 10 to 10.745 GHz

Coupling: beta = 1 (critical)

SNR: 3.5

Field strength: 5T

Q: 15000 at 10 GHz (scaling w/ anomalous skin depth)
Form factor: 0.57

Total system noise: 900 mK

Light blue is a "futuristic" projection reaching DFSZ with the same parameters as above except:

Acquisition live time: 1 year at 80% uptime
Frequency range: 10 to 40 GHz

Field strength: 15T

Total system noise: 1/6.09 * SQL
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Tuning (side view):

7.4 GHz

Resonant frequency set by gap width, which

=)

8 GHz

tunes as the wedge moves vertically.
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Mode Map for Z

Retuning required every
~1 mm =~10 MHz.
Each realignment takes
~2 minutes.
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Tuning, how it works (in simple case)

New figure depicting tuning with vertical motion in simple annular case (similar to

below).
Gap width is tuned as the

wedge moves vertically.
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We present results from a first experimental demonstration of a tunable thin-
shell axion haloscope, as proposed in [JCAP02(2021)018]. This novel geome-
try decouples the overall volume of the haloscope from its resonant frequency,
thereby evading the steep sensitivity degradation in scaled high-frequency halo-
scopes. An aluminum 4 L pathfinder (designed for 6.8-8.2 GHz) has been fabri-
cated and measured at room temperature. A singly polarized, axion-sensitive,
TMo10-like mode is clearly identified against a background of spurious reso-
nances. The on-resonance E-field distribution is mapped, verifying results from
numerical calculations. With high-precision alignments, we achieve robust tun-
ing over a representative frequency range. Anticipating future cryogenic oper-
ations, we demonstrate successful cavity alignments relying only on microwave
reflection measurements, achieving a form factor of 0.57 and a room temperature

Q of 5,000.
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