

Le Hoang Nguyen for **BRASS** collaboration. **Institute of Experimental Physics - University of Hamburg** le.hoang.nguyen@uni-hamburg.de

BRASS-p Status, Signal Scan Result, and Searches for Exotic WISPy Phenomenon

Contents:

- BRASS-p upgrade and status
- First result on HPDM search over 12-18 GHz
- BRASS-p search for exotic
 WISPy DM

Setup of BRASS-p Experiment in University of Hamburg

BRASS Experiment

Hidden Photon

$$\chi_{\rm sens} = 4.5 \times 10^{-14} \left(\frac{P_{\rm det}}{10^{-28} \, \rm W} \right)^{\frac{1}{2}} \left(\frac{0.3 \, {\rm GeV/cm^3}}{\rho_{\rm CDM,halo}} \right)^{\frac{1}{2}} \left(\frac{1 \, {\rm m^2}}{A_{\rm dish}} \right)^{\frac{1}{2}} \left(\frac{\sqrt{2/3}}{\alpha} \right).$$

Axion/ALPs

$$g_{\phi\gamma\gamma, \; {
m sens}} = rac{3.6 imes 10^{-8}}{{
m GeV}} \left(rac{5 \; {
m T}}{\sqrt{\langle |{f B}_{||}|^2
angle}}
ight) \left(rac{P_{
m det}}{10^{-23} \, {
m W}}
ight)^{rac{1}{2}} \left(rac{m_{\phi}}{{
m eV}}
ight) \left(rac{0.3 \, {
m GeV/cm^3}}{
ho_{
m DM, halo}}
ight)^{rac{1}{2}} \left(rac{1 \, {
m m^2}}{A_{
m dish}}
ight)^{rac{1}{2}}$$

Broadband sensitivity to a large parameter space and resonant enhancement is compensated by the large surface area.

Prototype: BRASS-p

BRASS-p Setup

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Illuminated Area: $A = 4.44 \text{ m}^2$

Parabolic mirror: D = 2.5m, f = 4.8m

Broadband Receiver: 12-18 GHz IF Bandwidth: 4 GHz

QUANTUM UNIVERSE

System Temperature

Low temperature for a room-temp experiment. (sub 15K achievable)

Raw spectrum with IF BW of 4 GHz with 125 Hz resolution

BRASS-p standard spectrum

Lowest detectable power within a 125 Hz channel

Important for transient stream/tidal dark matter signal. Lowest det power is 10^{-21} Watt over 12-16 GHz/14-18 GHz in only 19.8 sec

Hidden photon dark matter search

	SR1a	SR1b
Frequency band:	12-16 GHz	14-18 GHz
Number of polarization channels:	2	2
Spectral resolution:	125 Hz	125 Hz
Starting date:	13 Nov 2022	24 Nov 2022
Ending date:	19 Nov 2022	2 Dec 2022
Number of spectra collected:	9998	12012
Total measurement time:	54.989 hours	66.066 hours

HP Dark Matter Signal Scan Result

BRASS-p:
$$\alpha = 2/3$$

$$P_{sg} = \left(\frac{\chi}{3.2 \cdot 10^{-14}}\right)^{2} \frac{\rho_{DM}}{0.3 \text{ GeV/cm}^{3}} \frac{A}{1 \text{ m}^{2}} \frac{\sqrt{\alpha}}{\sqrt{2/3}}$$

No signal above LEE's → Set 95% upper limit Detection Threshold (7.5 σ_{SG})

HP Dark Matter Signal Scan Result

[arxiv:2310.xxxxxx]

Axion/ALPs Search

$$g_{a\gamma\gamma} = \frac{3.6 \times 10^{-8}}{\text{GeV}} \left(\frac{\sigma_{\text{det}}(\nu) N_{\text{ch}}(\nu)^{-1/2}}{10^{-23} \,\text{W}} \right)^{\frac{1}{2}} \left(\frac{5 \,\text{Tesla}}{B_{\text{ex}}} \right) \\ \times \left(\frac{m_a}{\text{eV}} \right) \left(\frac{0.3 \,\text{GeV/cm}^3}{\rho_{\text{DM}}} \right)^{\frac{1}{2}} \left(\frac{1 \,\text{m}^2}{A_{\text{eff}}} \right)^{\frac{1}{2}}$$

Averaged horizontal field strength is approx 0.9 Tesla

Data taking this year!

Axion/ALPs

Talk by Zhitnitsky ,Özbozduman, and Jinsu Kim

Axion Quark Nugget

Relativistic Axion

Cosmic Axion Background

Talk by Nitta

SHM with $\rho_{\rm DM}=0.45 {{\rm GeV} \over {\rm cm}^3}$ and ${\rm v_{dis}}\approx 220~{\rm km/s}$

 $\mathbf{Minivoid}\,\rho_{\mathbf{DM}}^{\mathbf{void}} = 0.075\rho_{\mathbf{DM}}$

Minicluster
Streams/Tidal
Gravitational Focusing

Hidden Photon

Polarized HPDM

Standard DM Signal

- Axion dark matter density is considered uniform
 - ullet SHM dark matter with $ho_{stdDM} pprox 0.45~{
 m GeV/cm}^3$
 - Solar system within the minivoid ($\rho_{ ext{minivoid}} pprox 0.075
 ho_{stdDM}$)

→ Stronger magnet panel (2-3 Tesla), larger surface area (x 10), dielectric implementation.

SHM with
$$ho_{
m DM}=0.45 {{
m GeV} \over {
m cm}^3}$$
 and ${
m v_{dis}} \approx 220$ km/s
$${
m Minivoid} \, \rho_{
m DM}^{
m void}=0.075 \rho_{
m DM}$$

EGGEMEIER et al. PRD 107, 083510 (2023)

Transient and Narrow DM Signal

• Minicluster/axion stars colliding

$$(\rho \approx (10^2 - 10^8)\rho_{stdDM})$$

Minicluster is morelikely to be gravitational disrupted and creates streaming and tidal effects

Eggemeier et al. Phys. Rev. Lett., 125.4 (2020)

$v_{\odot} = 0.2 \text{ mpc/year}$

Ellis et. al 10.1103/ PhysRevD.106.103514

Transient and Narrow DM Signal

• DM Stream/tidal/seasonal gravitation focusing

$$F \sim \frac{v^2}{(11.2 \, \mathrm{km/s})^2} R_E.$$

TABLE I. Streams with different densities before gravitational formation (GE) and for hairs after GE.

Density before	GF Number of streams :	Density after GF
(ρ_2/ρ_0)		$(A ho_a/ ho_0)$
1	1	10 ⁸
0.1	1	10°
0.01	1	10^{6}
10 *	10	10 ⁿ
10 4	500	10°
10 °	$2 \cdot 10^{4}$	10×
10 *	$4\cdot 10^6$	102
10 T	$2 \cdot 10^{8}$	10

Arza et al. 2212.10905 Kryemadhi et al. 2210.07367 Kryemadhi talk @ PATRAS 2022

neighbourhood.

BRASS-p Capability on Tidal and Stream

- Wide bandwidth (4 GHz IF)
- High resolution (5 Hz to 125 Hz)
- Long data taking campaign (low electricity consumption)
- Second polarization for axion dm veto.

Local sensitivity for stream

• No signal → set limit on stream existence

BRASS-p Capability on Tidal and Stream

- Wide bandwidth (4 GHz IF)
- High resolution (5 Hz to 125 Hz)
- Long data taking campaign (\$\frac{40}{2}\) eur/day)
- Second polarization for axion signal veto.

Future Development and Conclusion

- BRASS is the synergy between radio astronomy and WISPs direct search.
- State-of-art receiver and digitizer (4 GHz, 125 Hz)
- Sensitive to various scenarios of WISPs (nonpolarization HP, polarized HP, Thermal Virialized DM, Transient DM) during one instance of acquistion.

Future

- Mounting magnet panels for ALPs search (2023)
- Implementation of dielectric configuration for magnet panel.
- Different frequency band with different receiver + next gen digitizer (16/32 GHz)

Sensitivity of the BRASS-p (probably exclusion limit too) with the other future implementation of available receiver in MPIfR.

Thank you for your attention Have fun!