Study of axion-like particles with the Perseus data of MAGIC Ivana Batković*, Giacomo D'Amico, Michele Doro, Marina Manganaro for the MAGIC collaboration

Abstract

- Two sources located in the **Perseus cluster NGC1275 & IC310**

Datasets	& signal m	odeling		
Dataset	Days	Obs. Time	Zenith range	S _{Li&Ma}
NGC1275 Flare	1 Jan '17	2.5 hrs	12° - 50°	61.3
NGC1275 Post – flare	02-03 Jan '17	2.8 hrs	12° - 38°	37.8
NGC1275 Low – state	Sep '16 – Feb '17	36.0 hrs	12° - 50°	31.8
IC310 – Flare	13 Nov '12	1.9 hrs	12° - 35°	18.0

We analysed 43.2 hours of data of two AGNs in Perseus: NGC1275 and IC310 located on redshift $z \sim 0.017$, observed by the MAGIC telescopes. • ALPs analysis – gammaALPs code – calculating the photon survival probability taking into account: 1. Magnetic field of the Perseus galaxy cluster 2. Milky Way magnetic field + EBL photon attentuation *University and INFN Padova - ivana.batkovic@phd.unipd.it

• Axion-like particles (ALPs) - interaction with very high-energy gamma rays in the strong magnetic fields -> modifying the SED of the observed target. • We analyzed 43.2 hours of observational data from the Perseus Galaxy Cluster, obtained with MAGIC telescopes. • We set the constraints on the ALPs mass, around hundreds of neVs and improving the current limits on the strength of their coupling to photons.

- one combination of mass and ALPs coupling.

Statistical analysis

- Binned likelihood: $\mathcal{L}(m_a, g_{a\gamma}; \mu \mid D) = \prod_{i \mid k} \mathcal{L}_{i,k}(m_a, g_{a\gamma}; \mu_i \mid D_{i,k})$

$\Phi_{obs} = dE \Phi_{int}(E, \mu_i) P_{\nu\nu}(E') \cdot IRF(E|E')$

- counts for each of the datasets *i* per bin *k*, respectively.

Effects of Systematics **MAGNETIC FIELD MODELING**

	B ₀ [μG]	η	n ₀ [cm ⁻³]	n ₂ [cm ⁻³]	r _{core} [kp
В	10	0.5	0.039	0.0045	80/280
B _{alt}	25	2/3	0.046	0.0036	57/278

Tab. 1: The parameters used for the modeling of the Perseus magnetic field *B* and performing a check of the effects magnetic field modelling has on the constraints by using the B_{alt} as the CTA Coll.

• The spectrum is modified, adding the effect of ALPs (the survival probability):

where μ_i and $D_{i,k}$ represent nuisance parameters and the observed

• For the case of ALPs, Wilks' theorem cannot be utilized! – we compute 100 realisations of magnetic field and Monte Carlo simulations • Introducing point-by-point computation to compute the correct coverage using the Monte Carlo simulations

Study of axion-like particles with the Perseus data of MAGIC – Ivana Batković – ivana.batkovic@phd.unipd.it

ENERGY SCALE To evaluate the effect of energy Mrk/421 MWD Polarisatio scale uncertainties coming from QUASARS the MAGIC telescopes, we ____ 2 Perseus MAGIC (E. artificially scaled the Axion-Like Perseus MAGIC (EParticle (ALP) energy-dependent 10^{-12} Preliminary signatures in spectra by ±15% 10 and checked the effects on the $m_a [eV]$ bounds. Fig. 4

This work is currently under review and is soon to be published.

• Confirming the previous constraints on the ALPs coupling to photons set in the range of 40 – 400 neV. • Full coverage computation additionally strengthens the • These results offer the strongest constraints on ALP masses in the range of 40 – 90 neV, with the greatest sensitivity for ALP masses of $m_a = 50$ neV, reaching the photon-axion coupling down to $g_{av} = 2.0 \times 10^{-12}$ GeV⁻¹.

Fig. 5: The likelihood-ratio statistic S computed over 154 ALP points of m_a and $g_{a\gamma}$ using the Perseus data. The black line shows a significance of 1.56 σ and orange one a significance of 2.58 σ (corresponding to a 95% and 99% confidence levels, respectively).

RESULTS AND CONCLUSIONS $S(g_{a\gamma}, m_a) = -2 \ln \frac{\mathcal{L}(g_{a\gamma}, m_a, \hat{\mu}, \hat{B}|D)}{\hat{c}} - \text{test statistic}$

Study of axion-like particles with the Perseus data of MAGIC – Ivana Batković – ivana.batkovic@phd.unipd.it

Fig. 6: The limits obtained with this work in comparison with current limits in the same part of the parameter space, gathered in O'Hare, cajohare/axionlimits: Axionlimits, https://cajohare.github.io/AxionLimits/ (2020)

