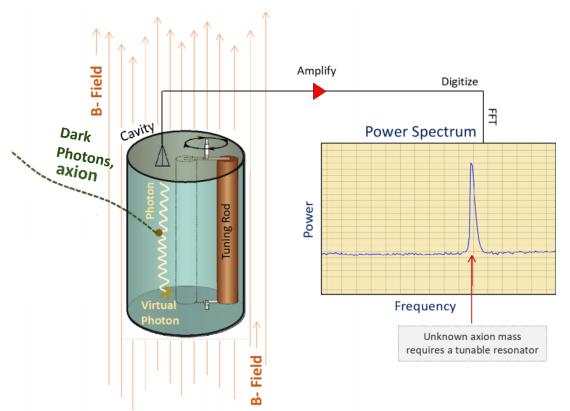


SERAPH: Wavelike Dark Matter Searches with SRF Cavities

07/06/2023

Raphael Cervantes

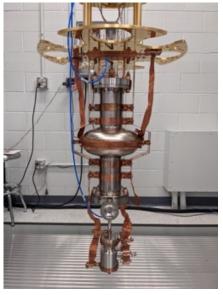
SQMS and Fermilab



How far can we push SRF technology for BSM physics searches?

Haloscope Search for Dark Matter

Microwave cavities can be used to detect dark photons and axions.


Dark photon searches don't need B-field.

Looking for $< 10^{-24}$ W signal over wide range of frequencies.

Credit: C. Boutan

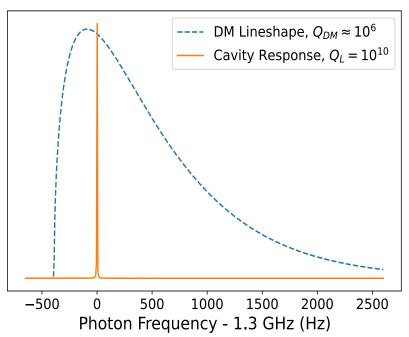
SRF Cavity Search for Dark Matter Searches

SQMS

 $Q\sim 10^{10}$

ADMX

Compared to stateof-the-art


Credit: N. Du

 $Q \approx 8 \times 10^4$

High Q improves SNR.

Possibly factor 10⁵ increase in instantaneous scan rate.

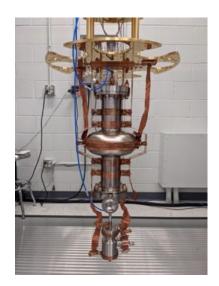
Instantaneous scan rate is proportional to \mathbf{Q}_L

For virialized axions

$$\frac{\mathrm{d}f}{\mathrm{d}t} \sim Q_L Q_{DM} \left(\frac{\eta \chi^2 m_{A'} \rho_{A'} V_{eff} \beta}{\mathrm{SNR} T_n(\beta + 1)} \right)^2$$

even if $Q_L \gg Q_{DM}$

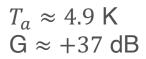
- Signal power $P_s \propto \min(Q_L, Q_{DM})$
- Noise power reduces with Q_L.
- Tuning steps $\Delta f \propto \Delta f_{DM}$. Cavity sensitive to distribution of possible DM rest masses.

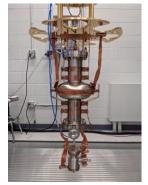

More details: arXiv:2208.03183

SERAPH: SupERconducting Axion and Paraphoton Haloscope

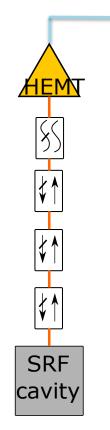
Family of SQMS SRF haloscope experiment. Name works on different levels.

SRF

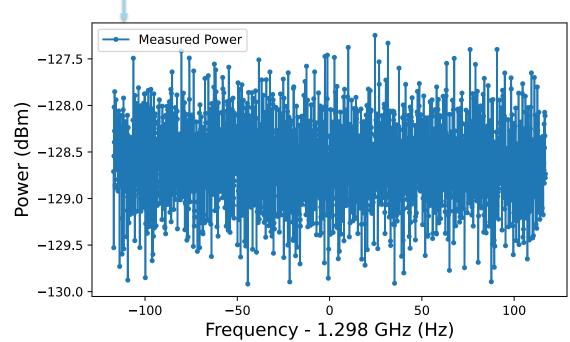

Seraphine



Sir Raph(ael)



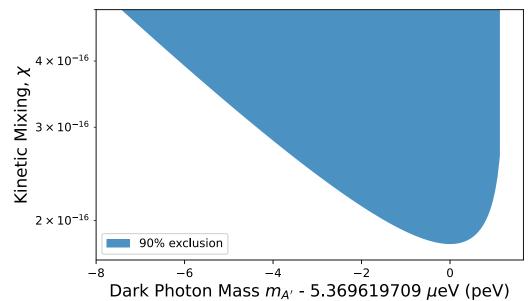
SERAPHv1: Parasitic Search for Dark Photons



 $T_c \approx 45 \text{ mK}$ $Q_L > 8 \times 10^9$ $f_0 = 1.298 \text{ GHz}$ $\beta \sim 0.7$

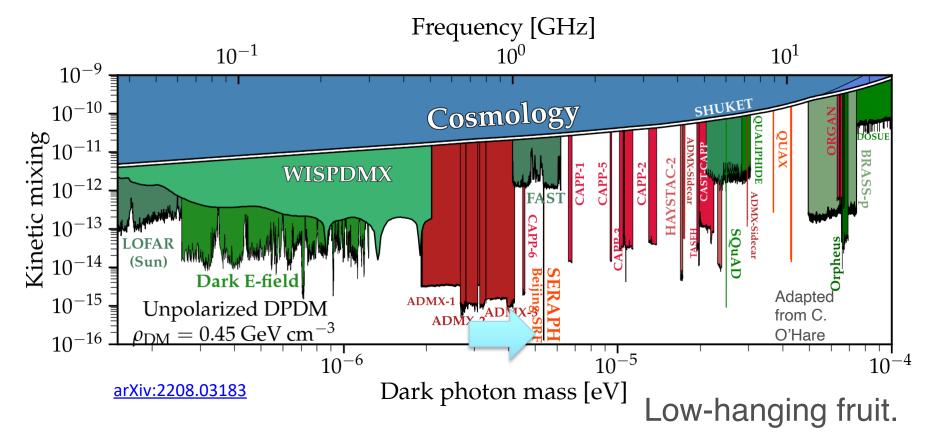
No DP signal. Just noise.

1000 seconds integration time

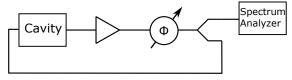


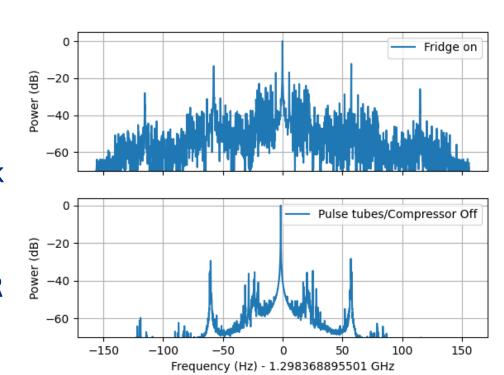
Excluded Dark Photon Parameter Space

haloscope analysis


In review purgatory until fridge is fixed. Measurements underway to address reviewer comments.

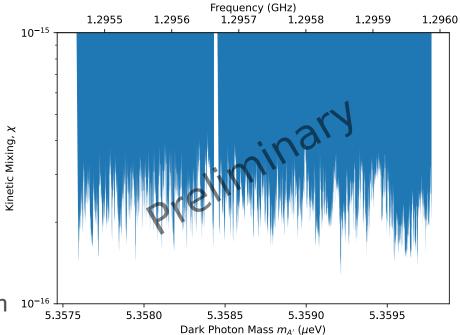
arXiv:2208.03183 reviewe


 Fermilab


Deepest Exclusion to Wavelike DPDM

Debugging Microphonics

- Measured with selfexcitation loop.
- Creates modulation of dark matter signal. Power gets spread into sidebands.
- Mitigated by turning off DR pulse tubes.
- Quantifiable systematic


Not expected to be a problem in future runs.

Tunable search with 1.3 GHz Cavity (SERAPH v1.1)

Similar 1.3 GHz cavity in liquid helium 10-16 bath. Tunes by mechanical compression for 500 kHz tuning range.

 $T_{cav} = 1.4 \text{ K}, Q_L = 2.4e8. Very overcoupled.}$

Similar experiment posted by **Chinese collaboration**

SRF Cavity Searches for Dark Photon Dark Matter: First Scan Results

Zhenxing Tang, 1,2,* Bo Wang, 3,* Yifan Chen, 4 Yanjie Zeng, 5,6 Chunlong Li, 5 Yuting Yang, 5,6 Liwen Feng, 1,7 Peng Sha, 8,9,10 Zhenghui Mi, 8,9,10 Weimin Pan, 8,9,10 Tianzong Zhang, 1 Yirong Jin, 11 Jiankui Hao, 1,7 Lin Lin, 1,7 Fang Wang, 1,7 Huamu Xie, 1,7 Senlin Huang, 1,7 and Jing Shu $^{1,2,12,\,\dagger}$ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China Beijing Laser Acceleration Innovation Center, Huairou, Beijing, 101400, China ³International Centre for Theoretical Physics Asia-Pacific. University of Chinese Academy of Sciences, 100190 Beijing. China ⁴ Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China ⁶School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuguan Road, Beijing 100049, China Institute of Heavy Ion Physics, Peking University, Beijing 100871, China ⁸ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ⁹Key Laboratory of Particle Acceleration Physics and Technology. Chinese Academy of Sciences, Beijing 100049, China ¹⁰ Center for Superconducting RF and Cryogenics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ¹¹Beijing Academy of Quantum Information Sciences, Beijing 100193, China ¹² Center for High Energy Physics, Peking University, Beijing 100871, China

We present the first use of a tunable superconducting radio frequency cavity to perform a scan search for dark photon dark matter with novel data analysis strategies. We mechanically tuned the resonant frequency of a cavity embedded in the liquid helium with a temperature of 2 K, scanning the dark photon mass over a frequency range of 1.37 MHz centered at 1.3 GHz. By exploiting the superconducting radio frequency cavity's considerably high quality factors of approximately 10¹⁰, our results demonstrate the most stringent constraints to date on a substantial portion of the exclusion parameter space, particularly concerning the kinetic mixing coefficient between dark photons and electromagnetic photons ϵ , yielding a value of $\epsilon < 2.2 \times 10^{-16}$.

(Dated: May 26, 2023)

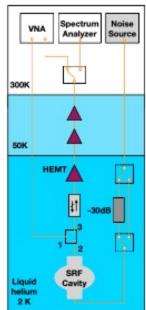
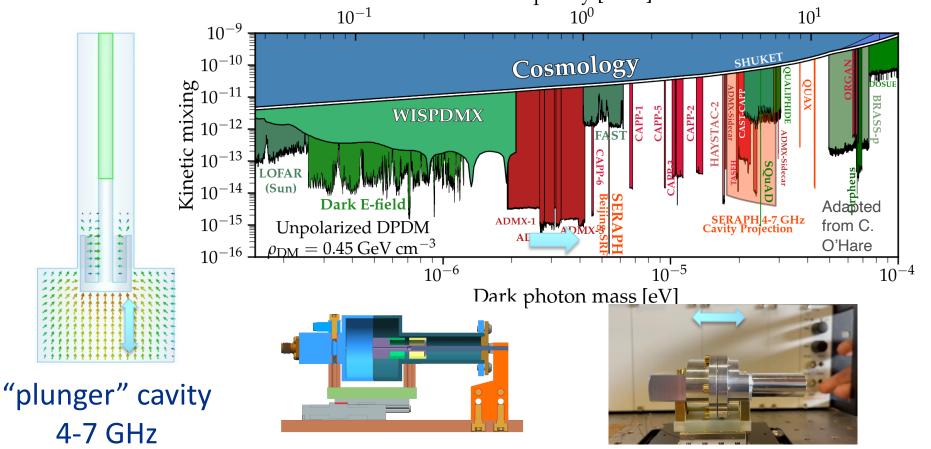
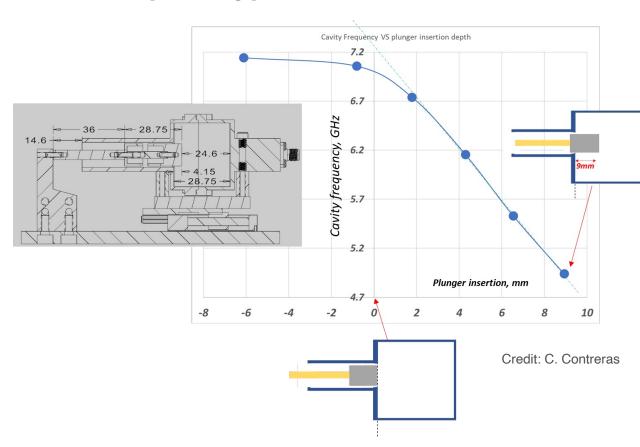
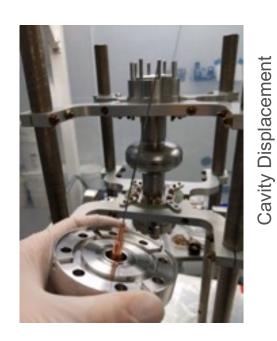



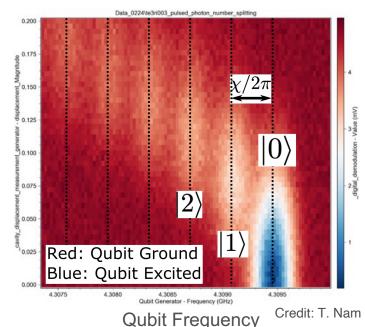
FIG. 1: Left: the single-cell SRF cavity equipped with frequency tuner. Right: Schematic of the microwave electronics for DPDM searches. The VNA measures the net amplification factor G_{net} of the amplifier circuit consisting of an isolator, a HEMT amplifier and two roomtemperature amplifiers. The noise source and the spectrum analyzer calibrate the resonant frequencies f_0^i . The time-domain signals from the SRF, with sequential amplification, are finally recorded by the spectrum analyzer.



Developing Widely Tunable SRF Cavity (SERAPH v2)

Aluminum prototype works at 2 K LHe bath




Consistent with simulation.

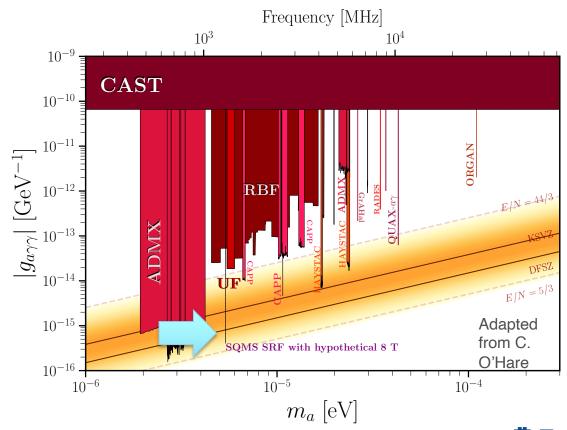
Niobium cavity has alignment issues that we are currently fixing.

Subverting SQL Noise with Qubit-based Photon Counting (SERAPH v3)

Quantum protocols counts

Superconducting qubit in SRF cavity.

photons non-destructively.

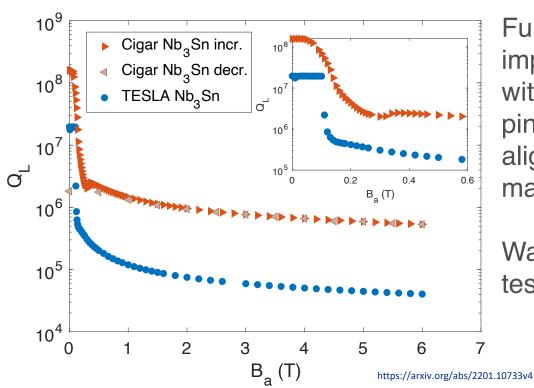

SQMS 3D transmon qubit performance:

> $T_1 \approx 25 \,\mu s$ $T_2 \approx 15 \,\mu s$

Regularly perform photon counting with dispersive measurements.

If this would work in an 8T field


Sensitivity to

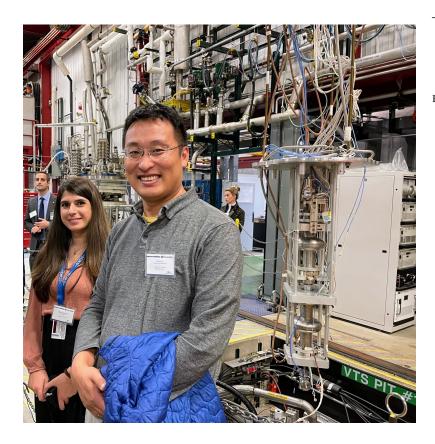

QCD axion with
single cavity and
HEMT.

Just make $Q \sim 10^{10}$ cavities work in magnetic fields!

7/06/23

Nb₃Sn Cavities Maintain High Q in Magnetic Fields

Further improvements with better flux pinning and better alignment with magnetic field.

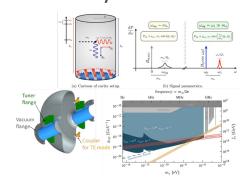

Waiting for new test stand.

Bianca Giaccone will talk about DarkSRF

PHYSICAL REVIEW LETTERS 130, 261801 (2023)

Search for Dark Photons with Superconducting Radio Frequency Cavities

A. Romanenko[®], ^{1,*} R. Harnik, ^{1,†} A. Grassellino, ^{1,‡} R. Pilipenko, ¹ Y. Pischalnikov[®], ¹ Z. Liu, ^{2,§} O. S. Melnychuk, ¹ B. Giaccone[®], ¹ O. Pronitchev, ¹ T. Khabiboulline, ¹ D. Frolov, ¹ S. Posen, ¹ S. Belomestnykh, ¹ A. Berlin[®], ¹ and A. Hook³


1 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

²School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA ³Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 28 January 2023; accepted 23 May 2023; published 26 June 2023)

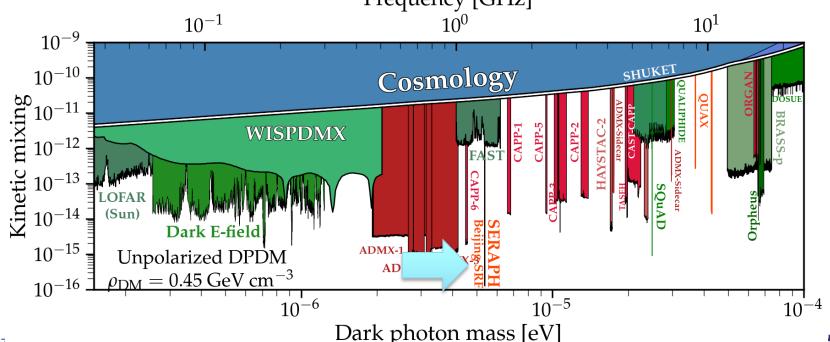
We conduct the first "light-shining-through-wall" (LSW) search for dark photons using two state-of-theart high-quality-factor superconducting radio frequency (SRF) cavities —Dark SRF—and report the results

Also working on low mass axion search with 2-mode cavity.

SQMS Center

This material is based upon work supported by the U.S. **Department of Energy, Office** of Science, National Quantum Information Science Research **Centers, Superconducting Quantum Materials and** Systems Center (SQMS) under contract number DE-AC02-07CH11359

Maybe openings in the future. Get in touch.



19

Summarize

 Ultra-high Q cavities have achieved unprecedented sensitivity to wavelike DPDM and can boost by scan rate by orders of magnitude.

 Progress towards high-Q cavities in magnetic fields for axion searches.
 Frequency [GHz]

