Anharmonic Effects on the Squeezing of Axion Perturbations

Supervisors:

Takeshi Kobayashi Sabino Matarrese

Collaborators:

Nicola Bartolo Matteo Viel

Introduction

• The history of the Oniverse undergoes a period of exponential expansion, initiative	he Universe undergoes a period of exponential expansion, infla	ınnatı	pansion,	ıı exp	ponential	t exp	Oİ	period	a	ındergoes	iverse	U	of the	history	The	\checkmark
---	---	--------	----------	--------	-----------	-------	----	--------	---	-----------	--------	---	--------	---------	-----	--------------

- \checkmark Quantum fluctuations provide the seeds for structure formation.
- ✓ The CMB sky we see today is classical.

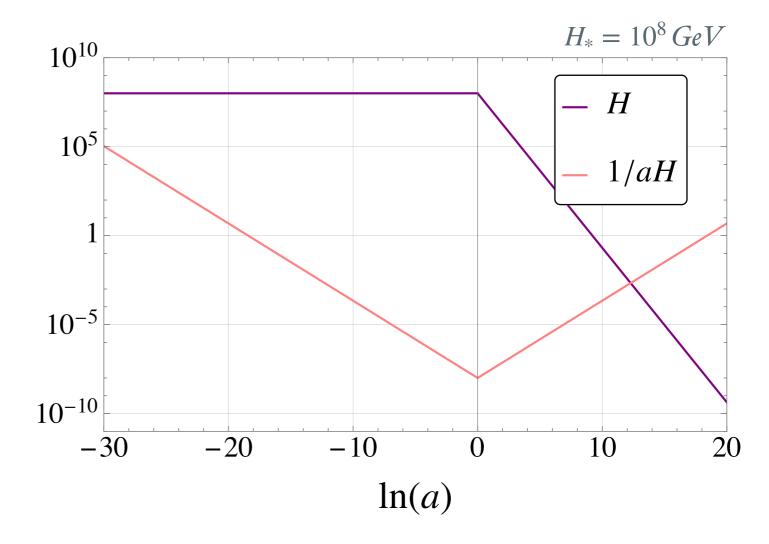
Introduction

- ✓ The history of the Universe undergoes a period of exponential expansion, **inflation**.
- \checkmark Quantum fluctuations provide the seeds for structure formation.
- ✓ The CMB sky we see today is classical.

Quantum to classical transition

- ✓ Inflation itself provides an explanation due to **squeezing**.
- ✓ Further source of classicalization: **reheating**.

Framework


✓ de Sitter (DS) inflation followed by a Radiation Domination (RD) phase

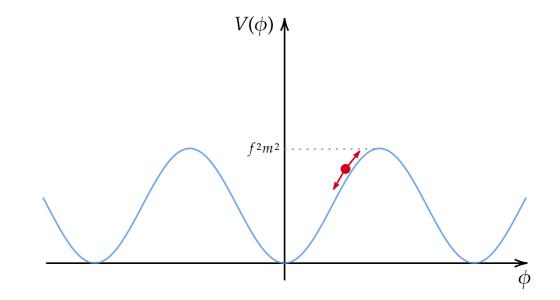
✓ Axions produced via misalignment mechanism with $f > max(T_{rh}, H_I)$

 \checkmark Axion is a spectator field

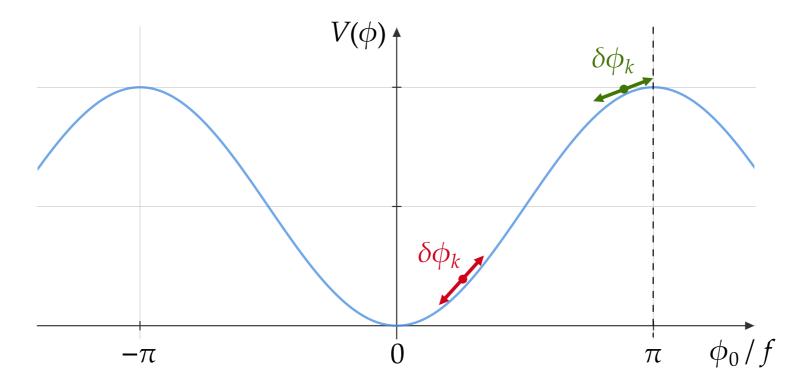
✓ Instantaneous reheating

$$H = \begin{cases} H_* & a < 0 \\ H_* a^{-2} & a > 0 \end{cases}$$

Framework

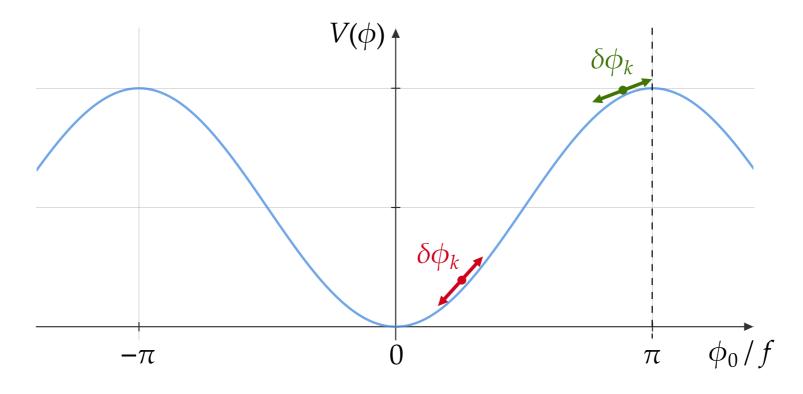

What about the axion potential?

$$V(\phi) = f^2 m_{\phi}^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$


$$\ddot{\phi}_0 + 3H\dot{\phi}_0 + fm_{\phi}^2 \sin\left(\frac{\phi_0}{f}\right) = 0$$

$$\delta \ddot{\phi} + 3H\delta \dot{\phi} + \left[\frac{k^2}{a^2} + m_{\phi}^2 \cos \left(\frac{\phi_0}{f} \right) \right] \delta \phi = 0$$

Conclusions


✓ Anharmonic effects produce an enhancement in the number of particles created due to the expansion

- ✓ The number of particles and the energy density increase exponentially when approaching the hilltop of the potential
- ✓ Anharmonic effects increase also the amount of squeezing of the perturbations

Conclusions

✓ Anharmonic effects produce an enhancement in the number of particles created due to the expansion

- ✓ The number of particles and the energy density increase exponentially when approaching the hilltop of the potential
- ✓ Anharmonic effects increase also the amount of squeezing of the perturbations

THANKS FOR THE ATTENTION