SUPAOX

A Superconducting Axion Search Experiment

Tim Schneemann, Kristof Schmieden, Matthias Schott

With great help of the RADES collaboration

SUPA°X JG L

IGI

<u>SUPAX</u>

- RF-Cavity haloscope in Mainz
- Started in 04/2022
- Search at 8 9 GHz (\sim 35 $\mu eV)$
- Goal: axion search using 14T magnet, $Q_0 = 10^6$
- Until now:
 - Setup (🗹)
 - DAQ 🗹
 - first analysis of proof of concept data taking run

Axion detection in RF cavities

Depends on cavity material conductivity:

- High purity copper: $\sim 5 \cdot 10^4$
- Superconductor: difficult in high magnetic field
 - Target: 10⁶
 - Demonstrated: 3 · 10⁵ (CAPP)
 - Materials under study: Nb₃Sn, YBCO, REBCO
 - Planned for SUPAX: NbN, MgB₂

J. Golm et. al (RADES) https://arxiv.org/abs/2110.01296

The Axion Setup

- 14T magnet
 - Ready for operation in Q3/Q4 2023
- LHe Cryostat
 - Setup in the next weeks
- Cavity & DAQ system complete and tested
- Cryo PreAmp @ 4K, 10GHz:
 - Gain: 36 dB
 - Noise: 3.6K (0.05 dB)
 - Main Noise source of the setup

Gl

The Dark Photon Setup

- While waiting for Magnet installation
 - Setup without magnet usable for Search for Dark Photons (Another DM candidate)
- Delay of Cryostat
 - Setup put into liquid helium (LHe) dewar
- Following results acquired this way

SUPA

G

Cavity Design

- Custom built cavity to fit into cryostat, including holding structure
- Made of high purity copper

Inner dimensions (103 ccm):

SUP<mark>A</mark>°X

JGU

The Dark Photon Setup

SUPA°X JG U

Real Time Data Acquisition

Gain curve of DAQ

- Noise structure of RSA with cryo Pre-Amp
- Measured with input terminated with 50Ω
- Clear Gain curve, not Noise dominated

- 10 MHz readout window around resonance frequency
 - Measurement at room temperature
 - 6:40h integration time
- General structure stable but drifts slightly
- Cryo Pre-Amp does not add additional fine structure
- Gain curve consistent over various frequency windows

Gaussian distribution of Noise

- If Gain curve Noise dominated \rightarrow standard deviation $\sigma \propto \frac{1}{\sqrt{t}}$
- Gain curve clearly not noise dominated

SUPA

Tim Schneemann

First preliminary physics results

• Search for Dark Photons, experimental setup in LHe dewar

SUPA

71L

Only sensitive near resonance frequency of cavity f = 8303.06 MHz

••••••

SUPA

IGU

First limit on DP kinetic mixing χ^2

First limit on Dark Photons with a mass of 34.34 μ eV in randomised polarisation scenario:

$$\chi < (6.86 \pm 2.17^{(\text{exp.})} \pm 1.75^{(\text{SG})}) \cdot 10^{-13}$$

SUP<mark>A</mark>0

-

Existing limits

SUPAO

JGU

Conclusion & Outlook

- Many thanks to RADES for their help in hardware and analysis questions
- Experiment works in principle, but much work is ahead
 - Add circulator
 - Test operation in B-field
- Tunable cavities
 - Without need of tuning rods?
- Test cryostat operation @ T = 1.5 K
- Test performance of superconductor on Q₀ with and without magnetic field
- Data run and axion limit until next PATRAS conference 🙂

Thank you for your attention!

{SUP<mark>A</mark>°χ

IGU

Backup: Signal injection test

- Simulations with injecting a signal in shape of a dark photon
- Width according to $Q_{DM} = 10^6$
- Signal strength as expected with kinetic mixing from previous slide
- Signal can be seen very clearly

SUPA

IGIU