

Dark Matter searches with the MAGIC telescopes

Marina Manganaro, University of Rijeka

(marina.manganaro@uniri.hr)

On behalf of the MAGIC collaboration

Image Credit: Urs Leutenegger (@urs.leutenegger)

Observations across the electromagnetic spectrum...

And beyond!

IceCube collaboration, 2023, Vol. 380, No. 6652

High-energy gamma rays (HE)

0.1 GeV < E < 100 GeV

Credit: NASA/DOE/Fermi LAT Collaboration

VHE y-rays

Credit: Dmitry V. Semikoz, lectures on High Energy astroparticle physics (observations by the H.E.S.S. telescopes)

Major Atmospheric Gamma Imaging Cerenkov Telescopes

Credit: FACT collaboration

Imaging Atmospheric Cherenkov telescopes

Credit: Daniel Lopez, IAC

Credit: Klepser, DESY, H.E.S.S. collaboration

Credit: VERITAS collaboration

Credit: CTAO (Cherenkov Telescope Array Observatory, under construction)

07.07.2023 -- 18th PWAWW - Rijeka

Extensive Air Showers (EAS)

Image credit: CTAO

Extensive Air Showers

Credit: CorsiKa Air shower simulation program – https://www.iap.kit.edu/corsika/

MAGIC (Major Atmospheric Gamma ray Imaging Cherenkov telescopes)

Credit: Giovanni Ceribella

MAGIC telescopes: Characteristics

The MAGIC telescopes	3
)
	+
	ACT I
Legendary Artifact – Cherenkov Teles	scopes 😰
When you get observational time with the l	MAGIC
telescopes, you can observe one galaxy of y choice.	our
e : you detect a Gamma-ray Burst	
"Any sufficiently advanced technology is	
indistinguishable from magic."	
indistinguishable from magic."	

- MAGIC I from 2004, MAGIC II from 2009
- Located in the Canary island of La Palma, 2200m a.s.l
- Mirror dish diameter: 17 m
- Active reflective mirror surface: 236² m
- Upgrade of MAGIC I camera and readout system in 2012
- 1039 PMTs cameras (FoV 3.5°)
- Energy range: 30 GeV to 100 TeV
- Fast repositioning (180° in less than 30s)
- Energy threshold can be lowered to 15 GeV
- Sensitivity above 220 GeV is ~0.66% of the Crab nebula flux (for 50 hs)
- In total 300 MAGICians from 12 countries

MAGIC telescopes: Sensitivity

Physics working groups

- Astroparticle and Fundamental Physics
- Transients objects
- Galactic objects
- Extragalactic objects

Dark MAGIC

Dark matter studies in MAGIC are pursued by many different projects:

http://clumpy.gitlab.io/CLUMPY/_images/DMsky_pink.png

- Dark Matter lines in the Galactic Center
- Dwarf spheroidal satellite galaxies observations
- Multi-dSphs combined analysis
- Galaxy clusters
- Axion-like particles hunting

Indirect Dark Matter searches

HOW?

- Dark matter signal is expected to be embedded in the spectrum of the astrophysical sources
- Observations of gamma-rays spectra
- Annihilation and decay in the Standard Model particles and other signatures in the spectra

Dark Matter flux and J-factors

Cerenkov Telescopes

Principle of indirect detection of dark matter, credit: GAO Linging and LIN Sujie

Primary DM gamma-ray spectra for various annihilation models, extracted from: Cirelli et al., JCAP 2011, 1103, 051

WISPs-ALPs

ALPs
 axion - solution to the Strong CP
 problem

- Photon-ALP mixing in the external magnetic field
- Irregularities (wiggles) in the spectra of astrophysical targets
- Knowledge of the magnetic fields is fundamental for producing the ALPs models

Feynman diagram of photon-axion interaction

Photon survival probability (https://github.com/me-manu/gammaALPs)

WISPs-ALPs

ALPs parameter space with current constraints, (https://cajohare.github.io/AxionLimits/), on the date 16/05/2022

Target sources

Milky-Way center (GC)

Dwarf spheroidal galaxies (dSphs) Image credit: ESO/Digitized Sky Survey 2

Image credit: X-ray: NASA/CXC/SAO; Optical: Detlef Hartmann; Infrared: NASA/JPL-Caltec

Galaxy clusters

Image credit: NASA/CXC/SAO/E.Bulbul, et al.

MAGIC campaigns for DM searches

Target	Year	Time (h)	Constraint	Reference			
The Milky Way							
MW Outer Halo	2018	10	Decay	Ninci et al., PoS, 2019, ICRC2019, 538			
MW inner Halo	2023	204	Annihilation–DM lines	Abe et al., Phys. Rev. Letters, 130, 061002 (2023)			
Dwarf Satellite Galaxies							
Draco*	2007	7.8	Annihilation	Albert et al., ApJ 200, 679, 428–431			
Draco	2018	52.6	Annihilation	Acciari et al., Phys. Dark Univ. 2022, 35, 100912			
Wilman 1	2008	15.5	Annihilation	Aliu et al., ApJ 2009, 697, 1299–1304			
Segue 1*	2008 - 2009	29.4	Annihilation	Aleksić et al., J., Cosmology Astropart. Phys. 2011, 1106, 035			
Segue 1	2010 - 2013	157.9	Annihilation + Decay	Aleksić et al., J. Cosmology Astropart. Phys. 2014, 1402, 008			
			Annihilation	Ahnen et al., J. Cosmology Astropart. Phys. 2016, 1602, 039			
Coma Berenices	2018	50.2	Annihilation	Acciari et al., Phys. Dark Univ. 2022, 35, 100912			
Ursa Major II	2014 - 2016	94.8	Annihilation	Ahnen et al., JCAP 951, 2018, 1803, 009			
Triangulum II	2014 - 2016	62.4	Annihilation	Acciari et al., Phys. Dark Univ. 2020, 28, 100529			

Extracted from: <u>arXiv:2111.01198</u>, * monoscopic observations

MAGIC campaigns for DM searches

Major Atmospheric

Gamma Imaging

Cerenkov Telescopes

Target	Year	Time (h)	Limit	Reference			
Dark Satellites							
1FGL J2347.3+0710	2010	8.3	_	Nieto et al. arXiv e-prints 2011, p. arXiv:1109.5935			
1FGL J0338.8+1313	2010 - 2011	10.7	-	Nieto et al., arXiv e-prints 2011, p. arXiv:1109.5935			
Intermediate Mass Black Holes							
Galactic Plane*	2005 -2006	25	Annihilation	Doro et al., Proceedings of the 30th ICRC, 2007			
Galaxy Clusters							
Perseus (Abell 426)	2008	24.4	Annihilation	Aleksić et al., ApJ 2010, 710, 634–647			
Perseus (Abell 426)*	2009 - 2017	202.2	Decay	Acciari et al., Phys. Dark Univ. 2018, 22, 38–47			

Searches for DM in dSphs with MAGIC

- 4 dSphs, combination of data from a multi-year observation program
- Total of 354.3 hours of good quality data
- Increasing the statistics
 better sensitivity
- 95% CL upper limits on velocity averaged annihilation cross section for 9 channels are obtained

Target	$\log_{10} J(heta_{ m max}) \ [{ m GeV^2 cm^{-5}}]$	$ heta_{ ext{max}} \ [ext{deg}]$	$ heta_{0.5}$ [deg]	$T_{ m eff}$ [h]	Year
Coma Berenices	$19.02\substack{+0.37 \\ -0.41}$	0.31	$0.16\substack{+0.02 \\ -0.05}$	49.5	2019
Draco	$19.05\substack{+0.22 \\ -0.21}$	1.30	$0.40\substack{+0.16 \\ -0.15}$	52.1	2018
Ursa Major II	$19.42\substack{+0.44\\-0.42}$	0.53	$0.24\substack{+0.06\\-0.11}$	94.8	2016-2017
Segue 1	$19.36\substack{+0.32 \\ -0.35}$	0.35	$0.13\substack{+0.05 \\ -0.07}$	157.9	2011 - 2013

Table of sources and corresponding info,

Acciari at al. 2022, Phys. Dark Universe 35, 100912, leading author: Camilla Maggio

MAGIC Searches for DM in dSphs with MAGIC **Major Atmospheric 62%** <α
 62%
 Gamma Imaging [s,10⁻²⁰] 10⁻²¹ 10⁻²² 10⁻²² **Cerenkov Telescopes** 10-21 %10⁻²³ 10-24 10-24 bb tŤ 10-25 10-25 10^{-26} 10^{-26} 10-27 Combined limit Segue 1 Combined limit 10-2 Segue 1 ······ Ursa Major II H_o median H_o median Ursa Major I 10⁻²⁸⊧ 10⁻²⁸ H_o 68% containment H_o 68% containment Draco Draco H_o 95% containment 95% containment **Coma Berenices** Coma Berenices 10⁻²⁹ 10⁻²⁹ Thermal relic cross section Thermal relic cross section 10⁻³⁰ 10^{-30} E. I I I I I I I E T T T T T **ETTIL** TETET T T T C C L 10^{3} 10² 10^{3} 10² 10⁴ 10⁵ 10⁴ 10⁵ m_{DM} [GeV] m_{DM} [GeV]

95% C.L. ULs for $<\sigma_{ann}v>$ for DM annihilation into bb and tt channels, Acciari et al. 2022, Physics of the Dark Universe 35, 100912, leading author Camilla Maggio

Searches for DM in dSphs with MAGIC

95% C.L. ULs for $<\sigma_{ann}$ v> for DM annihilation into bb and tau+tau- pairs, in comparisons with the results from other experiments , Acciari et al. 2022, Physics of the Dark Universe 35, 100912, leading author Camilla Maggio

Line-like features in the GC with MAGIC

- 223 hours of observations of the Galactic Centre region
- Energies reaching up to 100 TeV
- High zenith angles increase the energy threshold
- Unbinned likelihood analysis
- No significant excess detected
- Constraints on the cross section for dark matter annihilation into two photons are obtained

Line-like features in the GC with MAGIC

95% CL upper limits on the annihilation cross section (left) and upper limits for the four DM density profiles (right) credit: Abe et al. 2023, Phys. Rev. Letters 130, 061002, leading author: Tomohiro Inada

ALPs searches in the Perseus cluster

- Photon ALP mixing 🗆 external magnetic field
- Flaring states
 increased constraining power
- 40.2 hours of NGC1275 data & 3.5 hours of IC310 data

- mixing in the blazar + jet
- mixing in the magnetic field of the galaxy cluster
- mixing in the extragalactic magnetic field + (γ + γ → e⁺ + e⁻)
- back-conversion in the galactic magnetic field

Photon-ALP mixing in the magnetic field, credit: M.A. Sanchez Conde et al., 2009, Phys.Rev.D79:123511

ALPs searches in the Perseus cluster

Binned likelihood $-\mathcal{L}(\theta, b) = \mathcal{L}(m_a, g_{a\gamma}; B, \Gamma, \Phi_0, E_c|b)$

- Model with fixed magnetic field realisation
- In the case of ALPs, due to the unknown magnetic field, random magnetic field realisations have to be employed to calibrate the test statistics for excluding the ALPs parameters.

Comparison of the MAGIC flux points with and w/out the ALPs model included. MAGIC collaboration, in preparation, 2023, leading author Ivana

MAGIC collaboration, in preparation, 2023, leading author Ivana Batković

Conclusions

- MAGIC has been very active in the DM searches with several DM campaigns over the years
- Study of the data from dSphs gave the most stringent limits in the TeV regime
- Results agree with the constraints set with other gamma-ray experiments
- Advancement of the multi-instrument analysis allows for more detailed studies
- Studies of the galactic centre are limited by the high energy threshold, but result in the boosted DM line-like signal
- Constraints on both cuspy and core profiles are set
- Axion-like particle searches show the potential on constraining the ALPs parameter space
- Irregularities (wiggles) in the spectra of astrophysical targets are investigated
- Knowledge of the magnetic fields is fundamental for producing the ALPs models

Thanks for your attention!

@MAGICtelescopes

Image Credit: Chiara Righi (@chirighi)