Search for the Cosmic Axion Background with ADMX

July 5, 2023 Tatsumi Nitta (The University of Tokyo, ICEPP) 18th Patras Workshop on Axions, WIMPs and WISPs @ University of Rijeka, Croatia @ University of Trieste, Italy

Cosmic axion Background (CaB) Dror, Murayama, Rodd, Phys. Rev. D 103, 115004 10^{3} CaB Landscape 10^{2} **CaB: relativistic species** HAYST $g_{a\gamma\gamma} = g_{a\gamma\gamma}^{\rm SE}$ 10^{1} of axions in Universe $m_a < 1 \text{ neV}$ 10^{0} 10^{-1} 10^{-2} $\Omega_a(\omega)$ <u>CaB sources</u> 10⁻⁰ - Thermal production 10^{-4} H_0 Preferred 10^{-5} - Decay of cosmic string 10^{-6} Cosmic Strir 10^{-7} - Dark matter decay 10^{-8} 10^{-9} 10^{-6} 10^{-8} 10^{-7} 10^{-5} 10^{-3} 10^{-4} 10^{-9} ω

No dedicated CaB search was performed ever \rightarrow Plenty possibility of discovery of new physics

CaB is broad

Broadband signal in standard analysis ADMX doesn't monitor absolute power level \rightarrow Only sensitive to signals much narrower than the digitization window

Standard analysis completely level off the CaB signal

→ Need new analysis technique (or new absolute power detector)

Equation of Motion

maxwell's equation

- $\nabla \cdot \mathbf{E} = \rho$ $\nabla \cdot \mathbf{E} = \rho$
- $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{B} = 0$
- $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$ $\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$
- $\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J}$

 g_{avv} **B** · ∇a is a key to explore Ca**B**

including axion

$$\boldsymbol{p} - \boldsymbol{g}_{a\gamma\gamma} \mathbf{B} \cdot \nabla a$$

CaB can induce this term

 $\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J} + \mathbf{g}_{a\gamma\gamma} (\mathbf{B}\partial_t a - \mathbf{E} \times \nabla a)$ For detecting DM axion

Anisotropy

Production mechanism of CaB:

- Thermal production
- Decay of cosmic string
- X -> aa where X is dark matter
 - X -> $\Phi \Phi$ -> aaaa at anywhere/
 - X -> $\Phi\Phi$ -> aaaa from galaxy anisotropic

Anisotropic signals varies signal amplitude as the Earth rotate (detector fixed on ground)

isotropic

Daily modulation

 $\pi/2$

$\alpha = \pi/2$: Signal maximized \rightarrow Daily modulation

Monitoring relative power level is enough to detect CaB

CaB power at ADMX

CaB case (differential power)

$$\begin{aligned} \frac{dP_a}{d\omega}(\omega,\alpha) &= \frac{\rho_c g_{a\gamma\gamma}^2 B^2 V C \beta}{8Q((\omega-\omega_0)^2 + (\omega_0/2Q)^2)} \frac{\omega_0^3}{\omega^3} \\ &\times \left[\Omega_a^{\text{MW}}(\omega) \int dz d\phi \mathcal{D}_{\nu}(-z) K(\omega,\alpha) + \frac{1}{2} \Omega_a^{\text{EG}}(\omega) \int dz d\phi K(\omega,\alpha) \right] \end{aligned}$$

Source of daily modulation

c.f. dark matter axion at ADMX

$$P_{\text{axion}} = 7.7 \times 10^{-23} \text{ W} \left(\frac{V}{136\ell}\right) \left(\frac{B}{7.5 \text{ T}}\right)^2 \left(\frac{C}{0.4}\right)$$
$$\times \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{\rho_a}{0.45 \text{ GeV/cc}}\right) \left(\frac{f}{1 \text{ GHz}}\right) \left(\frac{Q_L}{80000}\right)$$
$$\end{bmatrix}.$$
$$K(\omega, \alpha) = \left[\frac{\sin(\omega L \cos \alpha)}{\omega L \cos \alpha} \frac{J_0(\omega R \sin \alpha)}{1 - (\omega R \sin \alpha/j_{01})^2}\right]^2$$

Power Excess Modulation (PEM)

JPA gain varies to get highest SNR

$$PEM = \frac{\overline{P}(t)/G_{JPA}(t) - \langle \overline{P}(t)/G_{JPA}(t) \rangle}{\langle \sigma_P(t)/G_{JPA}(t) \rangle} k_B T_{sys} \chi$$

PEM clears JPA fluctuations \rightarrow better sensitivity to the modulation signals

Dataset

PHYSICAL REVIEW LETTERS 127, 261803 (2021)

Editors' Suggestion

Featured in Physics

Search for Invisible Axion Dark Matter in the 3.3–4.2 μ eV Mass Range

C. Bartram,¹ T. Braine,¹ E. Burns,¹ R. Cervantes,¹ N. Crisosto,¹ N. Du,¹ H. Korandla,¹ G. Leum,¹ P. Mohapatra,¹ T. Nitta¹,^{*} L. J Rosenberg,¹ G. Rybka,¹ J. Yang,¹ John Clarke,² I. Siddiqi,² A. Agrawal,³ A. V. Dixit,³ M. H. Awida,⁴ A. S. Chou,⁴ M. Hollister,⁴ S. Knirck,⁴ A. Sonnenschein,⁴ W. Wester,⁴ J. R. Gleason,⁵ A. T. Hipp,⁵ S. Jois,⁵ P. Sikivie,⁵ N. S. Sullivan,⁵ D. B. Tanner,⁵ E. Lentz,⁶ R. Khatiwada,^{7,4} G. Carosi,⁸ N. Robertson,⁸ N. Woollett,⁸ L. D. Duffy,⁹ C. Boutan,¹⁰ M. Jones,¹⁰ B. H. LaRoque,¹⁰ N. S. Oblath,¹⁰ M. S. Taubman,¹⁰ E. J. Daw,¹¹ M. G. Perry,¹¹ J. H. Buckley,¹² C. Gaikwad,¹² J. Hoffman,¹² K. W. Murch,¹² M. Goryachev,¹³ B. T. McAllister,¹³ A. Quiskamp,¹³ C. Thomson, 13 and M. E. Tobar 13

(ADMX Collaboration)

Discard 950-1020 MHz where JPA gain significantly fluctuates

Reanalyze run1C-part1 dataset with special selection for CaB search

Uncertainties

Four sources of uncertainties:

- 2. Short timescale (about 5 minutes) fluctuation
- 3. Daily fluctuation
- 4. Uncertainty on $K(\omega, \alpha)$

1. Standard haloscope uncertainties (Q, β , SNRI, T_{off}/ϵ , B^2VC)

1. Standard Uncertainties on ADMX

We just use the same uncertainties related to the axion halo scope

TABLE II. Summary of uncertainties associated with the observed power.

Source	Fractional uncertainty on P_{axion}
Cavity Q factor	2%
Antenna coupling	2%
JPA SNRI	0.8%
$T_{\rm off}/\epsilon$	4.3%
$B^2 V C$	3%
Total	6%

2. Daily power fluctuation

Receiver chain: Digitizer + HFET amps + cables is not perfectly stable ex.) temperature change, vibration…

Dedicated 1-week power monitoring performed to extract potential uncertainty

Estimated as 2.8% (not the dominant uncertainty)

3. Short timescale fluctuation

Residual JPA gain fluctuation is the dominant uncertainty

This is calculated from the RMS of the PEM spectrum

14

4. Uncertainty on $K(\omega, \alpha)$

 $K(\omega, \alpha)$ is determined each timestamp, assuming vacant cylinder without rod for simplicity We estimated how $K(\omega, \alpha)$ changes by the existence of the tuning rod ~ 30% uncertainty

Assuming $\vec{E} \cdot \vec{B} = 1$

empty	rods (f~780 MHz)	rods (f~1 GHz)
0.69	0.62	0.54
0.47	0.47	0.42
0.47	0.38	0.26

Result

Best sensitivity ~ 2e-9 [/GeV] at lower mass (due to kinematics)

CAST bound is strong but ADMX did good job

There might be able to get better sensitivity by a few improvements

Abs. Power: Absolute power measurement

17

about U Tokyo activity related to qubits

Future prospects

R=L: Pancake-like cavity greatly enhances signal parallel to the cavity z-axis

Future prospects 10 mK: Superconducting qubits are cool

Achievable lower noise

Summary

- The first direct CaB search with the ADMX dataset
- No signal found but limit on $g_{a\gamma\gamma}$ in a particular CaB model
 - \rightarrow Further improvements might open searches for deeper parameter space

The paper is on arxiv 2303.06282 submitted to PRL

T. Nitta,^{1,2,*} T. Braine,¹ N. Du,¹ M. Guzzetti,¹ C. Hanretty,¹ G. Leum,¹ L. J Rosenberg,¹ G. Rybka,¹ J. Sinnis,¹ John Clarke,³ I. Siddiqi,³ M. H. Awida,⁴ A. S. Chou,⁴ M. Hollister,⁴ S. Knirck,⁴ A. Sonnenschein,⁴ W. Wester,⁴ J. R. Gleason,⁵ A. T. Hipp,⁵ P. Sikivie,⁵ N. S. Sullivan,⁵ D. B. Tanner,⁵ R. Khatiwada,^{6,4} G. Carosi,⁷ N. Robertson,⁷ L. D. Duffy,⁸ C. Boutan,⁹ E. Lentz,⁹ N. S. Oblath,⁹ M. S. Taubman,⁹ J. Yang,⁹ E. J. Daw,¹⁰ M. G. Perry,¹⁰ C. Bartram,¹¹ J. H. Buckley,¹² C. Gaikwad,¹² J. Hoffman,¹² K. W. Murch,¹² M. Goryachev,¹³ E. Hartman,¹³ B. T. McAllister,^{13,14} A. Quiskamp,¹³ C. Thomson,¹³ and M. E. Tobar¹³

- Achieved by the new analysis to search daily modulation signals

 \rightarrow Any daily modulation signal can be detected by this analysis

APS/123-QED, CERN-TH-2023-041

Search for the Cosmic Axion Background with ADMX

(ADMX Collaboration)

J. A. Dror,¹⁵ H. Murayama,^{3, 16, 17} and N. L. Rodd¹⁸

Backup

21

Va makes Daily modulation

 $\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a \qquad \mathbf{B} \cdot \nabla a \sim \mathbf{B} \cdot \mathbf{k}$

The effective charge density will be changed by axion spatial gradients ~ inner product of magnetic field and momentum changed effective charge

axion induced electric field becomes like this $(\nabla^2 - \partial_t^2)\mathbf{E}_a = g_{a\gamma\gamma}\mathbf{B}_0\partial_t^2 a - g_{a\gamma\gamma}(\mathbf{B}_0 \cdot \nabla)\nabla a$

signal is proportion to

 $\hat{\mathbf{z}} - (\hat{\mathbf{n}} \cdot \hat{\mathbf{z}})\hat{\mathbf{n}}$ where $\mathbf{B}_0 = B_0\hat{\mathbf{z}}$ $\mathbf{k} = \omega\hat{\mathbf{n}}$ if it is TM modes, signal is proportion to $\sin^2 \alpha$, where $\alpha = \arccos(\hat{\mathbf{n}} \cdot \hat{\mathbf{z}})$

Why we need cascade decay?

Simplest case

 χ is any dark matter

assuming having coupling only with axions

 $\rightarrow \chi$ decays too fast by

Bose enhancement (interference with environmental axions and the diagram)

Cascade decay can evade the problem. (χ decay rate is independent with the existence of environmental axions)

23