

Fabrication and characterisation of high kinetic inductance **NbTiN films**

30 µm

DART WARS Collaboration Meeting 6 February 2023

Federica Mantegazzini

Roadmap

Goal: Definition of deposition recipe for high kinetic inductance and highly non linear superconducting films for TWPAs

 \rightarrow high R_S, sufficiently high T_c, control on L₀

Steps:

1. Choice of the material

2. Exploration of the sputtering parameters

3. Fine-tuning of the deposition recipe

4. Measurement of the kinetic inductance

5. Fabrication of first KI-TWPA prototypes

(see Andrea Giachero's presentation)

1. Choice of the material

In order to reach high parametric amplification

- \rightarrow fabricate a sufficiently non-linear low-dissipative medium with feasible length
- \rightarrow maximise the non-linearity of the kinetic inductance:

$$L_{\rm K}(I) \approx L_0 \cdot \left(1 + \frac{I^2}{I_*^2}\right) \text{ with } I_* \propto 1/\sqrt{R_{\rm n}}$$

 \rightarrow Best material candidates: high-resistivity superconductors

Our choice: NbTiN \rightarrow high resistivity (o.f.m. 100-200 $\mu\Omega$ cm) \rightarrow high critical temperature (~ 12-13 K)

- Load-lock chamber + 2 deposition chambers
- Vacuum ~1e-8 mbar
- Upwards sputtering
- Nb_{80%}Ti_{20%} target

Example of recipe for NbTiN films:

Parameter	Typical values
Power (P)	500-1000 W
Pressure (p)	1-5e-3 mbar
Ar flow (f _{Ar})	50 sccm
N_2 flow (f_{N2})	3-10 sccm
Chuck temperature (T)	200-500 °C
Deposition time (t)	2-10 minutes

Run R1: Blank wafers diced in samples \rightarrow transition measurements in liquid helium (T = 4.2 K)

Fabrication run $R1$				
Wafer	P/W	p/mbar	$f_{\rm Ar}/{ m sccm}$	$f_{\rm N_2}/{\rm sccm}$
T1	700	2e-3	50	5
T2	700	3e-3	50	4
Т3	700	3e-3	50	5
T4	700	3e-3	50	6
T5	1200	3e-3	50	5
T6	700	3e-3	50	7
T7	700	3e-3	50	8
T8	700	3e-3	50	6.5
$T9^*$	700	3e-3	50	7
T10	600	3e-3	50	7

Deposition time fixed at *t* = 6 minutes

Note: deposition rate depends on P, p, f_{Ar}/f_{N2} \rightarrow film thickness is not constant

 $^{*}T = 300 \,^{\circ}\mathrm{C}$

=5<

Run R1: Blank wafers diced in samples \rightarrow transition measurements in liquid helium (T = 4.2 K)

			Fabric	ation run I	<i>R1</i>	
Wafer	P/W	p/mbar	$f_{\rm Ar}/{ m sccm}$	$f_{\rm N_2}/{\rm sccm}$	$T_{\rm c}/{ m K}$	$R_{ m s}/\Omega/{ m sq}$
T1	700	2e-3	50	5	10.16	17.88
T2	700	3e-3	50	4	5.15	21.5
T3	700	3e-3	50	5	10.38	17.75
Τ4	700	3e-3	50	6	13.9	15.63
T5	1200	3e-3	50	5	$<\!\!4.2$	-
T6	700	3e-3	50	7	14.17	19.63
T7	700	3e-3	50	8	13.16	29.75
T8	700	3e-3	50	6.5	13.86	19.25
$T9^*$	700	3e-3	50	7	13.86	19.25
T10	600	3e-3	50	7	13.77	21.13

 $^{*}T = 300 \,^{\circ}\mathrm{C}$

$$L_0 = \frac{R_{\rm S} \cdot \hbar}{\pi \cdot T_{\rm C} \cdot k_{\rm B} \cdot 1.762}$$

Dau

Run *R1*: T_c, R_S, L₀ as function of nitrogen flow L₀ is estimated as $L_0 = \frac{R_S \cdot \hbar}{\pi \cdot T_C \cdot k_B \cdot 1.762}$

		Fa	brication	run $R1$	
	Wafer	P/W	p/mbar	$f_{\rm Ar}/{\rm sccm}$	$f_{\rm N_2}/{\rm sccm}$
otore	T1	700	2e-3	50	5
	Τ2	700	3e-3	50	4
	Т3	700	3e-3	50	5
	Τ4	700	3e-3	50	6
	T5	1200	3e-3	50	5
	Τ6	700	3e-3	50	7
	T7	700	3e-3	50	8
	Τ8	700	3e-3	50	6.5
	$T9^*$	700	3e-3	50	7
$^{*}T = 300 ^{\circ}\mathrm{C}$	T10	600	3e-3	50	7

10 T6T2T1 Т9 T10 Т3 8 T7T4Τ8 $L_0 \, [\mathrm{pH/sq}]$ 28 56 4 $f_{\rm N_2}$ [sccm] page 07

Run *R1*: T_c , R_s , L_0 as function of nitrogen flow L_0 is estimated as $L_0 = \frac{R_S \cdot \hbar}{\pi \cdot T_C \cdot k_B \cdot 1.762}$

		Fa	brication	run <i>R1</i>	
	Wafer	P/W	p/mbar	$f_{\rm Ar}/{\rm sccm}$	$f_{\rm N_2}/{\rm sccm}$
otorc	T1	700	2e-3	50	5
	Τ2	700	3e-3	50	4
	Т3	700	3e-3	50	5
	Τ4	700	3e-3	50	6
	T5	1200	3e-3	50	5
	T6	700	3e-3	50	7
	Τ7	700	3e-3	50	8
	Τ8	700	3e-3	50	6.5
	T9*	700	3e-3	50	7
$^{*}T = 300 ^{\circ}\mathrm{C}$	T10	600	3e-3	50	7

10 T6 T2T1 T9T3 8 T10T7T4Τ8 $L_0 \, [\mathrm{pH/sq}]$ 28 56 4 $f_{\rm N_2}$ [sccm]

page 08

Fixed parameters:

 \rightarrow constant deposition rate

Parameter	Value
Power (P)	600 W
Pressure (p)	3e-3 mbar
Ar flow (f _{Ar})	50 sccm
N_2 flow (f _{N2})	7 sccm
Chuck temperature (T)	400 °C
Deposition time (t)	4 minutes

Fabrication run $R2$			
Wafer	t/minutes		
W1	6.0		
W2	2.0		
W3	9.0		
W4	4.0		
W5	3.0		
W6	2.5		

Varying time: $t \in [2, 9 \text{ minute}]$

 \rightarrow varying thickness

3. Fine-tuning of the deposition recipe: Sputtering rate

Calibration of sputtering rate

 \rightarrow Lithography step is necessary to precisely measure the metal thickness:

Metal thickness measured with AFM

Note: Oxide thickness measured with optical interferometer

bade

3. Fine-tuning of the deposition recipe: Uniformity

Estimation of the uniformity of the film thickness

- → Measurement of the sheet resistance (25 points over the 6 " wafer)
- \rightarrow Variation is about 4%
- \rightarrow Radial gradient (thinner film at the edge)

Fixed parameters:

Parameter	Value
Power (P)	600 W
Pressure (p)	3e-3 mbar
Ar flow (f _{Ar})	50 sccm
N_2 flow (f _{N2})	7 sccm
Chuck temperature (T)	400 °C
Deposition time (t)	4 minutes

		Fabricat	ion run	R2
Wafer	t/minutes	T/nm	$T_{\rm c}/{\rm K}$	R
W1	6.0	29.8	13.45	3
W2	2.0	7.4	12.03	12
W3	9.0	43.8	14.07	
W4	4.0	19.5	13.35	4
W5	3.0	14.5	12.88	6
W6	2.5	10.8	12.45	8

Varying time: $t \in [2, 9 \text{ minute}]$

Fit: $R_{\rm S}(h) = \frac{\rho_0}{h} \cdot \left(1 + \frac{3}{8} \cdot \frac{l_b}{h}\right)$

Fuch's model (doi: 10.1017/S0305004100019952)

Phenomenological model

Fit: $R_{\rm S}(h) = \frac{\rho_0}{h} \cdot \left(1 + \frac{3}{8} \cdot \frac{l_b}{h}\right)$

Fuch's model (doi: 10.1017/S0305004100019952)

Phenomenological model

4. Measurement of the kinetic inductance

LC resonator:
$$f_{\rm res} = \frac{1}{\sqrt{(L_{\rm g} + L_0) \cdot C}}$$

Measurement of f_{res} at millikelvin

Simulations of the resonator (fixing L_q and C, varying L_0) \rightarrow "calibration curve":

5. Fabrication of KI-TWPA prototypes:

#	Step	Description
1	Wafer labelling	Labelling of the wafers
2	Initial cleaning	HF + IPA
3	Oxidation	Dry oxide, $T = 975 ^{\circ}C$, 90 min oxidation + 60 m
4	Control od oxide thickness	Expected thickness: about 40 nm
5	Initial wafer weighing	Check weight with high precision balance
6	Sputter deposition NbTiN	rf-magnetron sputtering (Kenosistec), see reci
7	Resistivity measurement	Measure sheet resistance with 4 point probe
8	Final wafer weighing	Check weight with high precision balance
9	Rinsing	Remove developer traces from backside of the
10	Resist coating	Resist coating, stepper resist
11	Exposure	Exposure with stepper (reticle DARTWARS-1)
12	Developing	-
13	Optical inspection	-
14	Rinsing	-
15	Hard bake	Hard bake, T = 120 °C, 1 h
16	Oxygen plasma	Oxygen plasma (T = 80 °C, 1 min) to adjust the
17	Dry etching	Dry etching, SF6, 150 mT, 15 s + 15 s
18	Remove resist	Wet removal (acetone + IPA) OR ashing with o
19	Final optical inspection	-
20	Coating of protective resist	-

•		
nn ai	nneal	Ing

ipe parameters

e wafer

e structure size

xygen plasma

Optical microscope (Leica DM3 XL)

PFIB SEM Helios 5 CXe

5. Fabrication of KI-TWPA prototypes: Photos

PFIB SEM Helios 5 CXe

Size of structures (finger width / gap) matches the design value

Residuals of resist

 \rightarrow for next productions: wet resist removal instead of ashing

Summary...

We have...

- 1. explored the sputtering parameters space
- 2. identified a promising deposition recipe and fine tuned it
- 3. verified experimentally the crucial parameters of the film: $T_c \approx 12.5 \text{ K}, R_s \approx 90 \Omega/\text{sq} \text{ and } L_0 \approx 8.5 \text{ pH/sq}$

 \rightarrow match with target values!

4. Fabricated the first KI-TWPA prototypes

Summary...

We have...

- 1. explored the sputtering parameters space
- 2. identified a promising deposition recipe and fine tuned it
- 3. verified experimentally the crucial parameters of the film: $T_c \approx 12.5 \text{ K}, R_s \approx 90 \Omega/\text{sq} \text{ and } L_0 \approx 8.5 \text{ pH/sq}$

→ **match** with target values!

4. Fabricated the first KI-TWPA prototypes

We will...

- 1. fully characterize the KI-TWPA prototypes at millikelvin (I_{*}, signal loss)
- 2. if necessary, improve the film characteristics
- 3. proceed with the final designs and microfabrication

... & Outlook

es at millikelvin (I_{*}, signal loss) istics

thank you.