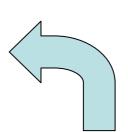
VIII Seminario sul Software per la Fisica Nucleare, Subnucleare e Applicata

> Hotel Porto Conte, Alghero 6-10 June 2011

Particles, processes and production cuts

Geant 4 tutorial course


Outline

- Introduction
 - A mention to physics list
 - Required methods
- Particles
 - definition and construction
- Processes
 - The G4VProcess class
 - Handling multiple processes
- Production cuts
- Summary and conclusions

Introduction

Mandatory user classes in a Geant4:

- G4VUserPrimaryGeneratorAction
- G4VUserDetectorConstruction
- G4VUserPhysicsList

Particles, **physics processes** and **cut-off parameters** to be used in the simulation must be defined in the **G4VUserPhysicsList** class

Why a physics list?

- "Physics is physics shouldn't Geant4 provide, as a default, a complete set of physics that everyone can use?"
- No:
 - Software can only capture Physics through a modelling
 - No unique Physics modelling
 - Very much the case for hadronic physics
 - But also the electromagnetic physics
 - Existing models still evolve and new models are created
 - Some modellings are more suited to some energy ranges
 - Medical applications not interested in multi-GeV physics in general
 - HEP experiments not interested in effects due to atomic shell structure
 - computation speed is an issue
 - a user may want a less-detailed, but faster approximation

Why a physics list?

- For this reason Geant4 takes an atomistic, rather than an integral approach to physics
 - provide many physics components (processes) which are de-coupled from one another
 - user selects these components in custom-designed physics lists
- This physics environment is built by the user in a flexible way:
 - picking up the particles he wants
 - picking up the physics to assign to each particle
- User must have a good understanding of the physics required
 - omission of particles or physics could cause errors or poor simulation

G4VUserPhysicsList: required methods

ConstructParticle():

- choose the particles you need in your simulation, define all of them here
- ConstructProcess():
 - for each particle, assign all the physics processes relevant to your simulation
 - What's a process ?
 - a class that defines how a particle should interact with matter, or decays

» it's where the physics is!

SetCuts() :

- set the range cuts for secondary production
 - What's a range cut ?
 - a threshold on particle production
 - » Particle unable to travel at least the range cut value are not produced

Particles: basic concepts

There are three levels of class to describe particles in Geant4:

• G4ParticleDefinition

- define a particle

aggregates information to characterize a particle's properties (name, mass, spin, etc...)

• G4VDynamicParticle

 describe a particle interacting with materials
 aggregates information to describe the dynamic of particles (energy momentum, polarization, proper time, etc...)

G4VTrack

describe a particle travelling in space and time
 includes all the information for tracking in a detector simulation
 (position, step, current volume, track ID, parent ID, etc...)

Definition of a particle

Geant4 provides the G4ParticleDefinition definition class to represent a large number of elementary particles and nuclei, organized in six major categories: *lepton, meson, baryon, boson, shortlived and ion*

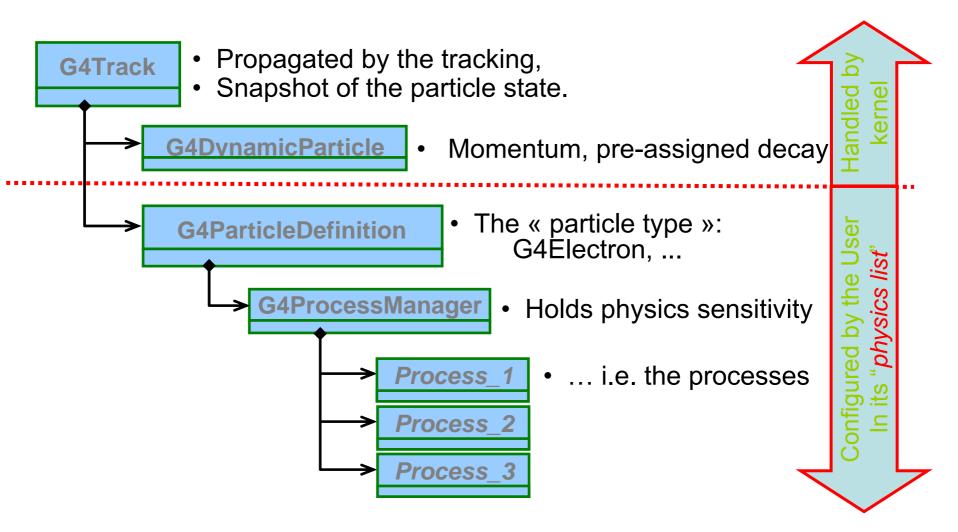
- Each particle is represented by its own class, which is derived from G4ParticleDefinition
- Proprieties characterizing individual particles are "read only" and can not be changed directly

User must define <u>all particles</u> type which are used in the application: not only <u>primary particles</u> but also all other particles which may appear as <u>secondaries</u> generated by the used physics processes

Constructing particles

Due to the large number of particles can be necessary to define, this method sometimes can be not so comfortable

It is possible to define **all** the particles belonging to a **Geant4 category:** void MyPhysicsList::ConstructParticle()
{
 G4Electron::ElectronDefinition();
 G4Proton::ProtonDefinition();


G4Neutron::NeutronDefinition(); G4Gamma::GammaDefinition();

- G4LeptonConstructor
- G4MesonContructor
- G4BarionConstructor
- G4BosonConstructor
- G4ShortlivedConstructor
- G4IonConstructor

void MyPhysicsList::ConstructBaryons()
{
 // Construct all baryons

G4BaryonConstructor pConstructor; pConstructor.ConstructParticle();

From particles to processes

Processes

Physics processes describe how particles interact with materials

Geant4 provides seven major categories of processes:

- Electromagnetic
- Hadronic
- Decay
- Optical
- Photolepton_hadron
- Transportation

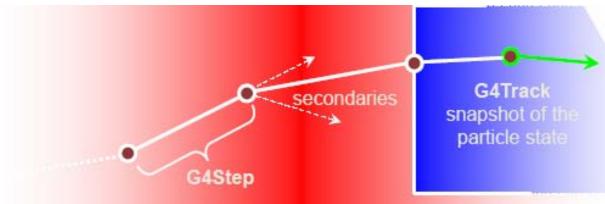
A process does two things:

- decides when and where an interaction will occur
 - method: GetPhysicalInteractionLength() \rightarrow limit the step
 - this requires a cross section
 - for the transportation process, the distance to the nearest object along the track is required
- generates the final state of the interaction (changes momentum, generates secondaries, etc.)
 - method: DoIt()
 - this requires a model of the physics

G4Vprocess class

Physics processes are derived from the **G4VProcess** base class

- Abstract class defining the common interface of all processes in Geant4:
 - Used by all physics processes (also by the transportation, etc...
 - Defined in source/processes/management
- Define three kinds of actions:
 - AtRest actions:
 - Decay, e⁺ annihilation ...
 - AlongStep actions:
 - To describe continuous (inter)actions, occurring along the path of the particle, like ionisation;
 - PostStep actions:
 - For describing point-like (inter)actions, like decay in flight, hadronic interactions ...

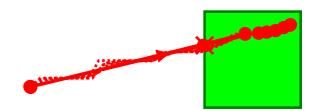

A process can implement a combination of them (decay = AtRest + PostStep) 12

AlongStep

PostStep

Handling multiple processes

- Many processes (and therefore many interactions) can be assigned to the same particle
- How does Geant4 decide which interaction happens at any one time?
 - interaction length or decay length is sampled from each process
 - shortest one happens, unless
 - a volume boundary is encountered in less than the sampled length (then no physics interaction occurs, but just simple transport)
 - repeat the procedure



Process ordering

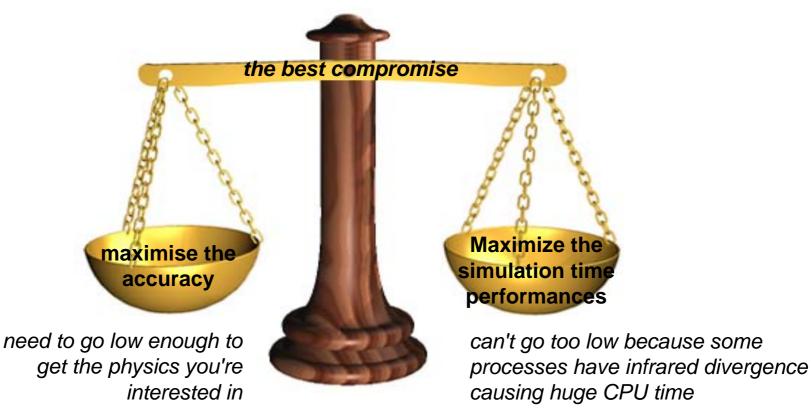
- Ordering of following processes is not critical, except for:
 - multiple-scattering and transportation
 - Assuming n processes, the ordering of the AlongGetPhysicalInteractionLength() of the last processes should be:

[n-2] ...[n-1] multiple scattering[n] transportation

- Why ?
 - Processes return a « true path length »;
 - The multiple scattering « virtually folds up » this true path length into a *shorter* « geometrical » path length;
 - Based on this new length, the transportation can geometrically limits the step.
- Other processes ordering usually does not matter.

Example processes

- Discrete process: Compton Scattering, hadronic inelastic, ...
 - step determined by cross section, interaction at end of step
 - PostStepGPIL(), PostStepDolt()
- Continuous process: Cerenkov effect
 - photons created along step, roughly proportional to step length
 - AlongStepGPIL(), AlongStepDolt()
- At rest process: mu- capture at rest
 - interaction at rest
 - AtRestGPIL(), AtRestDolt()
- Rest + discrete: positron annihilation, decay, ...
 - both in flight and at rest
- Continuous + discrete: ionization
 - energy loss is continuous
 - knock-on electrons (δ-ray) are discrete

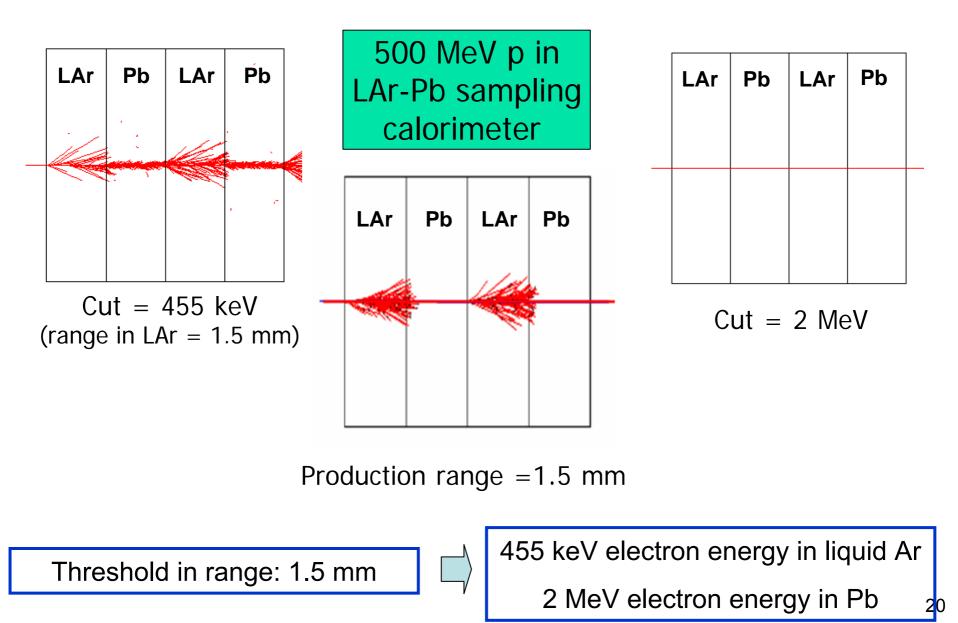

pure

com

Each simulation developer must answer the question: how low can you go?

- should I produce (and track) everything or consider thresholds?

This is a balancing act:


- The traditional Monte Carlo solution is to impose an absolute cutoff in energy
 - particles are stopped when this energy is reached
 - remaining energy is dumped at that point
- But, such a cut may cause imprecise stopping location and deposition of energy
- There is also a particle dependence
 - range of 10 keV γ in Si is different from range of 10 keV e- in Si is a few microns
- . And a material dependence
 - suppose you have a detector made of alternating sheets of Pb and plastic scintillator
 - if the cutoff is OK for Pb, it will likely be wrong for the scintillator which does the actual energy deposition measurement

- In Geant4 there are <u>no tracking cuts</u>
 - particles are tracked down to a zero range/kinetic energy
- Only <u>production cuts</u> exist
 - i.e. cuts allowing a particle to be born or not
 - Applied to: gamma, electron, positron, proton

Why are production cuts needed ?

- Some electromagnetic processes involve infrared divergences
 - this leads to a huge number of smaller and smaller energy photons/electrons (such as in Bremsstrahlung, d-ray production)
 - production cuts limit this production to particles above the threshold
 - the remaining, divergent part is treated as a continuous effect (i.e. AlongStep action)

- Geant4 solution: impose a production threshold
 - this threshold is a distance, not an energy
 - default = 1 mm
 - the primary particle loses energy by producing secondary electrons or gammas
 - if primary no longer has enough energy to produce secondaries which travel at least 1mm, two things happen:
 - discrete energy loss ceases (no more secondaries produced)
 - the primary is tracked down to zero energy using continuous energy loss
- Stopping location is therefore correct
- Only one value of production threshold distance is needed for all materials because it corresponds to different energies depending on material.

Cuts per region

- In a complex detector there may be many different types of sub-detectors involving
 - finely segmented volumes
 - very sensitive materials
 - large, undivided volumes
 - inert materials
- The same value of the secondary production threshold may not be appropriate for all of these
 - user must define regions of similar sensitivity and granularity and assign a different set of production thresholds (cuts) for each
- Warning: this feature is for users who are
 - simulating the most complex detectors
 - experienced at simulating EM showers in matter

Conclusions

- All processes share the same interface, G4VProcess:
 - This allows Geant4 to treat processes generically:
 - Three types of actions are defined:
 - AtRest (compete), AlongStep (cooperate), PostStep (compete)
 - Each action define a "GetPhysicalInterationLenght()" and a "DoIt()" method
- Processes are attached to the particle by its G4ProcessManager
 - This is the way the particle acquires its sensitivity to physics
 - This G4ProcessManager is set up in the "physics list"
 - Please be careful of the multiple scattering and transportation ordering
- Some processes require "cuts", i.e. "production threshold":
 - to be defined to absorb infrared divergences into a continuous energy loss contribution
 - That needs to be tuned by the user for its particular application
- One range cut can be specified per region