

Flavor Physics: the Super Flavor Factory

Marcello A. Gíorgí Università di Písa & INFN Písa VIII Seminario di Alghero 6-12 Giugno, 2011

The Flavor Route

June 8,2011

3

High Luminosity flavor factory potential for New Physics complementary to Energy Frontier

- Flavor precision measurements sensitive to New Physics (NP)
 - Measure interference effect in known processes
 - Measure decays: rare or forbidden in Standard Model
- NP effects governed by
 - New Physics Scale NP(Λ)
 - Effective coupling C
 - Different Intensities (from interactions)
 - Different Patterns (for instance from simmetries)
 - With 7-10x10¹⁰ pair bb, cc, $\tau\tau$ (75-100 ab⁻¹) it is possible

NP(A) found at LHC

- Determine couplings FV e CPV of NP
- Look for heavier states
- Study the flavor structure of NP

NP(Λ) not found at LHC

- Look for indirect signals of NP
- Link them to explaining NP models
- •Constrain regions in parameter space with NP(Λ) sensitivity up several tens of TeV.

Some phenomena as LFV in t decay show clear signals of NP

Why flavour physics

- 1. Explore the origin of CP violation
 - Key element for understanding the matter content of our present universe
 - Established in the B meson in 2001
 - Direct CPV established in B mesons in 2004
- 2. Precisely measure parameters of the standard model
 - For example the elements of the CKM quark mixing matrix
 - Disentangle the complicated interplay between weak processes and strong interaction effects
- 3. Search for the effects of physics beyond the standard model in loop diagrams
 - Potentially large effects on rates of rare decays, time dependent asymmetries, lepton flavour violation, ...
 - Sensitive even to large New Physics scale, as well as to phases and size of NP coupling constants

Statistic S

Experimental ingredients: BaBar optimized for time dependent CP asymmetries

Goals of SuperB

SuperB is a Super Flavor Factory

High statistics production of $b \overline{b}, b \overline{b}, \tau^+ \tau^-$ pairs. Follow the high intensity route to New Physics , look at signals through high precision measurements in Flavor/

Physics programme in a nutshell

- Versatile flavour physics experiment
 - Probe new physics observables in wide range of decays.
 - Pattern of deviation from Standard Model can be used to identify structure of new physics.
 - Clean experimental environment means clean signals in many modes.
 - Polarized e^- beam benefit for τ LFV searches.
 - Best capability for precision CKM constraints of any existing/proposed experiment.
 - Measure angles and sides of the Unitarity triangle
 - Measure other CKM matrix elements at threshold and using $\boldsymbol{\tau}$ data.

B_{u,d} physics: Rare Processes and Precision Measurements

- Goal: Reveal presence of New Physics (NP) using two-pronged attack:
 - Search for Rare Processes: NP contributions can be as large as Standard Model ones
 - Large sensitivity to NP
 - Ability to distinguish among NP models
 - Make Precision Measurements of many quantities: over constrain the Standard Model predictions
 - NP will often lead to discrepancies in global analyses of measured processes

will build on experience of current Bfactories.

CKM constraints

measures the sides and angles of the Unitarity Triangle (UT)

- Many measurements constrain the sides and angles of the UT: the SM predicts that all measurements "intersect" at apex of the triangle
- When NP is present, the measurements do not yield a unique apex, but you need the high precision of a Super Flavour Factory.

ō

B_{u.d} physics: Rare Decays

Determination of Susy mass insertion parameter $(\delta_{13})_{LL}$

Importance of having very large sample >75ab⁻¹

$Br(B_d \rightarrow K \vee \nu) - Z$ penguins and right hand current

~[20-40] ab⁻¹ are needed for observation

If these quantities are measured @ <~10% deviations from the SM can be observed

COMPLEMENTARY: LHC and Flavour with 75 ab⁻¹

Charm @ SuperB

• $Run_{\beta\gamma=0.238} \alpha T(4S)$: $\mathcal{L} = 10^{36} \text{ cm}^{-2} \text{ sec}^{-1}$; $\int \mathcal{L} dt = 75 \text{ ab}^{-1}$ at the $\Upsilon(4S)$

✓ Large improvement in D⁰ mixing and CPV: factor 12 improvement in statistical error wrt BaBar (0.5 ab^{-1});

✓ time-dependent measurements will benefit also of an improved (2x) D⁰ propertime resolution. [\approx 1KHz of c c]

Unique feature of SuperB

- Run at $\psi(3770)$: $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{ sec}^{-1}$; $\int \mathcal{L} dt = 500 \text{ fb}^{-1}$ at the $\Psi(3770)$
 - ✓ $D\overline{D}$ coherent production with 100x BESIII data and CM boost up to $\beta\gamma=0.9$; ✓ almost zero background environment;
 - ✓ possibility of time-dependent measurements exploiting quantum coherence.

• Two improvements in mixing precision come from threshold data: CAVEAT: NO TIME-DEPENDENT STUDIES INCLUDED YET

Charm at DD threshold

- Almost zero background analyses: search for rare/forbidden decays, precise measurement of relative D⁰-D⁰ strong phases, search for CPV in wrong sign (WS) semileptonic (SL) D⁰ decay modes.
- Unique possibilities of time-dependent measurements at DD threshold currently under study:
 - coherent production allows time-dependent measurements also withCPtagged events;
 - CP, T, CPT conservation tests similar to those in $K^0-\overline{K}^0$ and $B^0-\overline{B}^0$ systems;
 - measure of the unitarity triangle in the Charm sector.

Time dependent measurements at the $\Psi(3770)$ (same as for Y(4s))

minimum boost needed to achieve the required Δt resolution

Time dependent measurements at DD threshold: only possible at SuperB

- Proper time resolution dominated by decay vertex resolution.
 - Production vertex precisely determined thanks to nm beamspot dimensions

Experimental considerations of running at DD threshold with boost

- Pro:
 - Very clean environment, backgroud extremely low;
 - Quantum coherence: mixing and CP, T, CPT analyses;
 - Access to D⁰-D⁰ relative phases and possibilities of timedependent Dalitz plot analyses with a model independent approach;
 - Systematic errors reduction due to background and Dalitz model uncertainties;
- Cons:
 - Time-dependent measurement require larger CM boost compared to the B⁰-B⁰ case to achieve adequate time resolution;
 - reconstruction efficiency decreases with large CM boost. Need to optimize the boost value.

Measurements with Polarization

Precision Electroweak

• $sin^2\theta_w$ can be measured with polarised e⁻

Measure LR asymmetry in

at the Υ (4S) to same precision as LEP/SLC at the Z-pole.

Can also perform crosscheck at $\psi(3770)$.

Is this measurement also possible with Charm?

- 1. @ Y(4S). But hadronization correction.
- 2. Operate at a ccbar vector resonance above open charm threshold $\Psi(3770)$, use the same analysis method as for b.

Polarization at low energies with high luminosity is needed

That is included in the SuperB design

g-2 Reach (Valencia Report 2008)

 Δa_{μ} is not in good agreement with SM

Measuring differential cross section of tau production would lead to measurement of the real part of tau form factor.

We began considering 1-3 prong

whose experimental selection is cleaner

Need to tag the sample:

Lepton tag: higher purity & higher diluition (at least 3 neutrinos)

Hadronic tag: lower purity & lower diluition (2 neutrinos)

Systematics come mainly from tracking

Should be able to measure the

real part (0.75-1.7)x10⁻⁶

June 8,2011

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos(\theta)} = a \cdot \cos(\theta)^2 + b$$
$$a \propto \beta^2 |F_1|^2$$
$$b \propto (2 - \beta^2) \cdot |F_1|^2 + 4\mathrm{Re}[F_2]$$

EXPERIMENT	Cross Section	Normal Asymmetry
\downarrow	$\operatorname{Re}\left\{F_{2}\right\}$	$\mathrm{Im}\left\{ F_{2}\right\}$
Babar+Belle $2ab^{-1}$	4.6×10^{-6}	2.1×10^{-5}
Super B/Flavor Factory (1 yr. running) 15ab ⁻¹	1.7×10^{-6}	7.8×10^{-6}
Super B/Flavor Factory (5 yrs. running) 75ab ⁻¹	7.5×10^{-7}	$3.5 imes 10^{-6}$

Polarized beam and tag on leptons and on hadrons $(t \rightarrow p n / t \rightarrow r n)$ reduces irreducible background!

Summary of Flavor Physics Program

B physics @Y (4S)

Variety of measurements for any observable

Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	Observable	B Factories (2 ab^{-1})	Super B (75 al		
$\sin(2eta)~(J/\psi~K^0)$	0.018	0.005 (†)		04	.04 (1)		
$\cos(2\beta)~(J/\psi~K^{*0})$	0.30	0.05	$\rightarrow \mathcal{B}(B \to \tau \nu)$	20%	4% (†)		
$\sin(2eta)~(Dh^0)$	0.10	0.02	$\blacktriangleright \mathcal{B}(B \to \mu\nu)$	visible	5%		
$\cos(2eta)~(Dh^0)$	0.20	0.04	$\blacktriangleright \mathcal{B}(B \to D\tau\nu)$	10%	2%		
$S(J/\psi \ \pi^0)$	0.10	0.02					
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \rho \gamma)$	15%	3% (†)		
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	$\mathcal{B}(B \to \omega \gamma)$	30%	5%		
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(B \to K^* \gamma)$	0.007 (+)	0.004 († *)		
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	$\frac{A_{CF}(B \rightarrow m')}{A_{CF}(B \rightarrow m')}$		0.05		
lpha (combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(D \to p\gamma)$	~ 0.20			
$\gamma (B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s\gamma)$	0.012 (†)	0.004 (†)		
$\gamma (B \to DK, D \to \text{suppressed sta})$	$\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)		
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody stat})$	$\sim 9^{\circ}$	1.5°	$\rightarrow S(K_s^0\pi^0\gamma)$	0.15	0.02(*)		
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10		
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_{0}^{0}\pi^{\mp})$	209	5.0					
			$A_{CP}(B \to K^*\ell\ell)$	7%	1%		
$S(\phi K^0)$	0.13	$0.02\;(*)$	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%		
$> S(\eta' K^0)$	0.05	0.01 (*)	$A^{FB}(R \to X \ \ell \ell)_{e_1}$	350%	50%		
$> S(K_s^0 K_s^0 K_s^0)$	0.15	0.02(*)	$\begin{array}{c} A (D \rightarrow A_s cc) s_0 \\ P(D V =) \end{array}$		0.007		
$> S(K_s^0 \pi^0)$	0.15	0.02 (*)	$\mathcal{B}(B \to K \nu \nu)$	VISIDIE	20%		
$S(\omega K_s^0)$	0.17	0.03 (*)	$\rightarrow B(B \rightarrow \pi \nu \bar{\nu})$	-	possible		
$S(f_0K_s^0)$	0.12	0.02(*)	-	Possible also at LHC	b		
		.,	Si	milar precision at LH	Cb		
IV al ferrelanders)	15 (-)	1.055 (-)	Example of «Super B specifics»				
West (inclusive)	1% (+)	0.5% (+)	inclusive in addition to exclusive analyses				
Vnnl (exclusive)	8% (*)	3.0% (+)	al angels with =0. /a magnet 1/2				
Wine 8,2011	8% (*)	M.A.Gior	gi channels Wit	.n nº, γ s, ν, many i	∧ S		

physics (po	plarized beam	s)	Ch	narm at Y	(4S) and thresh	old
Process	Sensitivity	 r	Mode	Observable	B Factories (2 ab ⁻¹)	Super B (75 ab ⁻¹)
10/) 010-9		$D^0 \rightarrow K^+ K^-$	y_{CP}	$2-3 \times 10^{-3}$	5×10^{-4}
$\mathcal{B}(au o \mu \gamma$	$) 2 \times 10^{\circ}$		$D^0 \rightarrow K^+ \pi^-$	y'_D	$2-3 \times 10^{-3}$	7×10^{-4}
${\cal B}(au o e \gamma)$	$2 imes 10^{-9}$			$x_D^{\prime 2}$	$1-2 \times 10^{-4}$	3×10^{-5}
$\mathcal{R}(\tau \times \mu \mu)$	$(1) 2 \times 10^{-10}$		$D^0 \rightarrow K^0_s \pi^+ \pi^-$	y_D	$2-3 \times 10^{-3}$	5×10^{-4}
$D(1 \rightarrow \mu \mu)$	$\mu j \ \Delta \times 10$		A	xD	$2-3 \times 10^{-3}$ 1-2 $\times 10^{-3}$	5 × 10 ⁻⁴
$\mathcal{B}(au ightarrow eee$) 2×10^{-10}		Average	yD TD	$1-2 \times 10^{-3}$ $2-3 \times 10^{-3}$	5×10^{-4}
$\mathcal{B}(au o \mu \eta)$	4×10^{-10}		$D^0 \rightarrow K^+ \pi^-$	*D	2-3 / 10	3×10^{-5}
12 ($c \sim 10^{-10}$			x'		7×10^{-4}
$\mathcal{D}(\tau \to e\eta)$	0 X 10 10		$D^0 \rightarrow K^+ K^-$	y_{CP}	To be evaluated	5×10^{-4}
$\mathcal{B}(au ightarrow \ell K)$	$\binom{0}{8} = 2 \times 10^{-10}$		$D^0 \rightarrow K^0_S \pi^+ \pi^-$	x	at LHCb	4.9×10^{-4} 3.5×10^{-4}
				$\left q/p\right $		3×10^{-2}
П.	V(CO)		L	φ		2°
$\mathbf{B}_{s} a$	t Y(55)			hannel	Sens	itivity
	1	1		$p^0 \rightarrow e^+e^-, D^0$	$\rightarrow u^+u^-$ 1 ×	10^{-8}
Observable	Error with 1 ab^{-1} H	Error with 30 ab^{-1}		$p^0 \rightarrow \pi^0 e^+ e^-, L$	$D^0 ightarrow \pi^0 \mu^+ \mu^- \qquad 2 imes$	10^{-8}
	0.16 ps^{-1}	0.03 ps^{-1}	L	$p^0 \to \eta e^+ e^-, D^0$	$^{\circ} ightarrow \eta \mu^{+} \mu^{-} \qquad 3 imes$	10^{-8}
1 B from angular analysis	0.07 ps -	0.01 ps -	L	$0^0 \rightarrow K^0_s e^+ e^-, L$	$D^0 o K^0_s \mu^+ \mu^- \qquad 3 imes$	10^{-8}
A_{cr}^{s}	0.006	0.004	L	$a^{+} \rightarrow \pi^{+}e^{+}e^{-},$	$D^+ \to \pi^+ \mu^+ \mu^- \qquad 1 \times$	10^{-8}
A _{CH}	0.004	0.004		→	4	10-8
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	$< 8 imes 10^{-9}$		$\mu^{+} \rightarrow e^{\pm}\mu^{\pm}$	1 ×	10^{-8}
$\left V_{td}/V_{ts} ight $	0.08	0.017		$\mu^{0} \rightarrow \pi^{0} e^{\pm} \mu^{\mp}$	2 ×	10^{-8}
$\mathcal{B}(B_s \to \gamma \gamma)$	38%	7%		$h^0 \rightarrow \eta e^{\pm} \mu^{\mp}$	2 ~ 3 ×	10^{-8}
β_s from $J/\psi\phi$	16°	6°		$K^0_{s}e^{\pm}\mu^{\mp}$	3 ×	10^{-8}
$\beta_s \text{ from } B_s \to K^0 \bar{K}^0$	24°	11°				
	-1 -1		L	$a^{+} \rightarrow \pi^{-}e^{+}e^{+},$	$D^+ \to K^- e^+ e^+ \qquad 1 \times$	10^{-8}
Bs : Definitive	ely better at LH	CD		$p^+ \to \pi^- \mu^+ \mu^+,$	$D^+ \to K^- \mu^+ \mu^+ 1 \times$	10^{-8}
Bu 6ne 8,2011		N	1.A.Giorgi L	$\mu^+ \to \pi^- e^\pm \mu^\mp,$	$D^+ \rightarrow K^- e^{\pm} \mu^{\mp} = 1 \times$	10^{-8}

Bu6ne 8,2011

M.A.Giorgi

Exotic hadronic spectroscopy

Hints of a new type of particles with more than 3 quarks

B-Factories produced a lot of results but ...

38

Exotic hadrons @ SuperB

- Much larger statistics
 @Y(4S) needed
- High luminosity energy scan needed:
 - produce resonances
 directly (E~4-4.5 GeV)
 - Exploit recent evidence of exotic states produced at Y(5S)

Physics Coordination

Physics Coordinators	: A.Bevan, M.Ciuchini, M.Rama, J.Walsh
Bd:	A. Stocchi,
Bs:	A. Drutskoy
Charm:	B.Meadows, N.Neri
Tau :	A.Lusiani, M. Roney
Spectroscopy& Exoti	cs : R.Faccini, A.Polosa
Interplay :	M.Ciuchini, L.Silvestrini
••••	

• • • • • •

....

Parameter	Requirement	Comment
Luminosity (top-up mode)	10 ³⁶ cm ⁻² s ⁻¹ @ Y(4S)	Baseline/Flexibility with headroom at 4. 10 ³⁶ cm ⁻² s ⁻¹
Integrated luminosity	75 ab ⁻¹	Based on a "New Snowmass Year" of 1.5 x 10 ⁷ seconds (PEP-II & KEKB experience-based)
CM energy range	au threshold to Y (5 <i>S</i>)	For Charm special runs (still asymmetric)
Minimum boost	βγ ≈0.237 ~(4.18x6.7GeV)	1 cm beam pipe radius. First measured point at 1.5 cm
e ⁻ Polarization Boost up to 0.9 in runs at low energy under evaluation for charm physics	≥80%	Enables τ <i>CP</i> and <i>T</i> violation studies, measurement of τ <i>g</i> -2 and improves sensitivity to lepton flavor-violating decays. Detailed simulation, needed to ascertain a more precise requirement, are in progress.

Future Super B Factories

	SuperB	Super KEKB
Peak Luminosity	>10 ³⁶	$0.8 \ge 10^{36}$
Integrated Luminosity	75 ab ⁻¹	50 ab ⁻¹
Site	Green Field	KEKB Laboratory
Collisions	mid 2016	2015
Polarization	80% electron beam	No
Low energy running	10 ³⁵ @ charm threshold	No
Approval status	Approved	Approved

SuperB Luminosity model

Large Piwinsky angle

 $\varphi_{\text{Piwinsky}} \equiv$

 $\frac{\sigma_z \, \tan \chi}{\sigma_x} > 20$

- Bunches are "long" ($\sigma_z \sim 5 \text{ mm}$), "natural" aspect ratio $\sigma_y / \sigma_x \sim 0.5\%$
- The collision region is short ($\Sigma_z \sim 400 \,\mu m$), very small aspect ratio $\Sigma_y / \Sigma_x \sim 0.01 \,\%$

Crab Waist

- Crab waist: modulation of the y-waist position, particles collides a same β_y realized with a sextupole upstream the IP.
- Minimization of nonlinear terms in the beam-beam interaction: reduced emittance growth, suppression of betatron and sincro-betatron coupling
- Maximization of the bunch-bunch overlap: luminosity gain

Polarization in SuperB: Spin Rotation

- 90° spin rotation about *x* axis
 - -90° about z followed by 90° about y
- "flat" geometry => no vertical emittance growth
- Solenoid scales with energy => LER more economical
- Solenoids are split & decoupling optics added.

P.Raimondi

Polarization resonances

- polarization resonances do constraint the beam Energy choice
- Plot shows the resonances in the energy range of LER
- Beam polarization computed assuming
 - > 90% beam polarization at injection
 - 3.5 minutes of beam lifetime (bb limited)
- From this plot is clear that the best energy for LER should be 4.18 GeV → HER must be 6.7 GeV

RF & Power

Novokhatski

-

 All power in the rings (5.2 MW + 3 should be absorbed by the water of system directly without causing any unpleasant beam problem like emiting rowth or instability due to high intertive the generated wake fields, vacuum rise or electron multipactoring. Transverse wake fields are generated in the symmetrical parts of the beam pipe. Dransverse wake fields can penetrate rough the small hole in the vacuum chamber rou	Č,	Su	iper	-B F	RF p	lug	ром	/er.	Bas	e Lii	ne.	Super	SL.	AC	Power absorptio	on
 Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields may propagate long istances. 													9		All nower in the rings (5.2.1	M/N + 3 M/N
Image: Intra- which which of the late late of the late of the late of the late of t	HER Total	Terol	HER	Mar	Number	HER	HER	Tatal	Total	Total	HER for murd	neffected LE	per		All power in the migs (0.2 i	
 In the product where where the product of the product	RF	Bunch	Bunch	voltare	of	S.R.	HOM	cavity	reflected	forward	to one	from Tot	8		should be absorbed by the	e water cooli
System directly without causing any unpleasant beam problem like emiting rowth or instability due to high interest with our instability due to high inter	oltare	length	making	per cavita	a casities	poter	power	lors	Down	power	cavity	one form	ab		evetere directly without on	
 Transverse wake fields can penetrate rought the small hole in the vacuum chamber or longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 	MV			MV	klystrons	MW	MW	MW	MW	MW	MW	MW MV	Ms		system directly without cau	using any
 Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate prough the small hole in the vacuum chamber or longitudinal slots of shielded belows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 		4.69											Q		unpleasant beam problem	like emittan
 Some amount of power (8.2 MW) v dissipated in the klystron beam coll Same amount of power (8.2 MW) v dissipated in the klystron beam coll Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate prough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 	7.01	4.78	4.20	0.58	12.00	3.99	0.27	0.54	0.36	5.16	0.43	0.03 8.1	2		anpicadant boarn problem	into ornitari
 Transverse wake fields can penetrate frough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 		5.00			6.00		_						2110		growth or instability due to	high intens
 International problem of the beam pipe. Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the beam pipe. Transverse wake fields can penetrate provide the shield bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 					_							HET	1		the generated welks fields	
 Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate prough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER LE	85		the generated wake fields,	vacuum pre
 Indecident production of the beam pipe. Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate prough the small hole in the vacuum chamber r longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 	Total	Zerol	B	Max	Number		HOM	Total	Total	Total	forward	reflected Plu	ski		rise or electron multipactor	rina
 Same amount of power (8.2 MW) v dissipated in the klystron beam coll Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate rough the small hole in the vacuum chamber rough the small	10	Buich	Bunch	voltage	or 	A.K.	HONE	cavity	reflected	breard	toone	from row	fat		noo or orought manpaotor	ing.
 Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate fields. Need collimators Transverse wake fields may propagate long istances. 	MV	ma	mar	MV	klystron	MW	MW	MW	MW	MW	MW	MW MV	. Bi			
 Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate nrough the small hole in the vacuum chamber r longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 		4.29	in the second se		Ki ji u oli			2417			10110		10		Same amount of power (9	2 M/M/ will
 Intransverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate nrough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 	5.25	4.71	4.20	0,66	8,00	2.12	0.41	0.45	0.05	3.03	0,38	0.01 16.3	5		Same amount of power (o.	∠ IVIVV) VVIII
Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate mough the small hole in the vacuum chamber of longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances.		5.00			4.00								a la		dissipated in the klystron b	eam collect
 Transverse wake fields are generated in the symmetrical parts of the beam pipe. Transverse wake fields can penetrate nrough the small hole in the vacuum chamber r longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances. 	•			Tra	nev	arec		ko	field	<u> </u>			2		DED II collimator is optimi	and but still
Transverse wake fields can penetrate nrough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances.			,	Tra	nsve	erse	e wa	ike 1	field	s	4 - d) <u>s</u>		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields
Transverse wake fields can penetrate nrough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, acuum valves and RF shields. Transverse wake fields may propagate long istances.	C C C C C C C C C C C C C C C C C C C	ans	ver	Tra se v cal p	nsve wake parts	erse e fie s of	e wa elds the	i ke t are bea	field gen am p	s iera	ted	in the	SI SI		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from Ya Collimator
hrough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, racuum valves and RF shields. ITransverse wake fields may propagate long istances.	⊇ [⊐Tr asyr	ans	vera	Tra se v cal p	nsve wake parts	e rse e fie s of	e wa elds the	i ke t are bea	field gen am p	s iera	ted	in the	SI SI		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from Ya Collocator
hrough the small hole in the vacuum chamber or longitudinal slots of shielded bellows, racuum valves and RF shields. ITransverse wake fields may propagate long istances.	C □Tr asyr	ans	vera	Tra se v cal p	nsve wake parts	erse e fie s of	e wa elds the	i ke t are bea	field gen am p	s iera ipe.	ted	in the	SI SI		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from Ya Collimator
acuum valves and RF shields. Transverse wake fields may propagate long istances.	⊇ Tr asyr	ans nme	ver: etric	Tra se v cal p se v	nsve wake parts wake	erse e fie s of e fie	e wa elds the elds	i ke t are bea can	field gen am p	s iera ipe.	ted ate	in the	SI SI		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from Ya Collimator
acuum valves and RF shields. Transverse wake fields may propagate long istances.	Tr asyr	ans nme ans	vera etric	Tra se v cal p se v	nsve wake parts wake	erse e fie s of e fie	e wa elds the elds e in f	ike t are bea can	field gen am p i per	s iera ipe. netra	ted ate	in the	S.		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Pouer from Ya Collimator
acuum valves and RF shields.	Tr asyr	ans nme ans ugh	vers etric vers the	Tra se v cal p se v	nsve wake parts wake nall h	erse e fie s of e fie nole	e wa elds the elds e in t	are bea can	field gen am p per vacu	s iera ipe. netra	ted ate	in the	S.		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from Ya Collimator
Collimators Transverse wake fields may propagate long istances.	Tr asyr	ans nme ans ugh	vers etric vers the	Tra se v cal p se v se sm	nsve wake parts wake nall h slots	erse e fie s of e fie nole s of	e wa elds the elds e in t	are bea can the	field gen am p per vacu	s iera ipe. netra uum	ted ate n cha ws,	in the	Since And		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from Ya Collimator Collimator
Transverse wake fields may propagate long	Tr syr	ans nme ans ugh	vers etric vers the	Tra se v cal p se v e sm nal	nsve wake parts wake nall h slots	erse e fie s of e fie nole s of	e wa elds the elds e in t f shi E shi	are bea can the elde	field gen am p per vacu	s oipe. netra uum ellov	ted ate n cha ws,	in the	Need		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Moter from 7 Collimator Collimator
Transverse wake fields may propagate long	Tr syr	ans nme ans ugh ugh	vers etric vers the tudi	Tra se v cal p se v e sm nal lves	nsve wake parts wake nall h slots	erse fie of fie nole s of d R	e wa elds the elds e in t f shi F sh	are bea can the elde	field gen am p per vacu ed be	s oipe. netra uum ellov	ted ate n cha ws,	in the	Need		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields More for Ya Collimator Collimator Collimator Transformer in Alcorder Seem provision Alcorder Seem provision Alcorder
istances.	Tr asyr Tr asyr	ans nme ans ugh ngil	vers etric vers the tudi	Tra se v cal p se v se v nal lves	nsve vake parts wake nall h slots and	erse fie of fie nole s of	e wa elds the elds e in t f shi F sh	are bea can the elde	field gen am p per vacu ed be ds.	s oipe. netra uum ellov	ted ate n cha ws,	in the	Need collimators		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from 74 Collimator Collimator Tool Tool Tool Tool Tool Tool Tool To
istances.	Tr asyr Tr hroi yr lo yacu	ans nme ans ugh ugh uum	vers etric vers the tudi	Tra se v cal p se v se v nal lves	nsve vake parts wake nall f slots and	erse fie of fie fie nole s of d R	e wa elds the elds e in t f shi F sh	ike t are bea can the elde	field gen am p per vacu ed be ds.	s oipe. netra uum ellov	ted ate n cha ws,	in the	Need collimators		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from 74 Collimator Collimator Tool HCM Power in Absorber Been position near Colling
	Tr asyr Tr arr hroi or lo racu	ans nme ans ugh ugh uum	vers etric the tudi val	Tra se v cal p se v se v nal lves	nsve vake parts wake nall f slots and wake	erse fie of fie fie fie of d R	e wa elds the elds e in t f shi F sh	ike t are bea can the elde nielc	field gen am p vacu ed bo ds. y pro	s nera netra uum ellov	ted ate n cha ws,	in the amber	Need collimators		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Power from YA Collimator Coll
IDE 8 2011 MA Giorgi	Tr asyr Tr asyr Tr hrou or lo 'acu	ans nme ans ugh ugh uum ans	vers etric vers the tudi vers	Tra se v se v se v nal lves	nsve vake parts wake nall f slots s and wake	erse fie of fie fie of s of d R	e wa elds the elds e in t f shi F sh	are bea can the elde nielc	field gen am p vacu ed be ds. y pro	s nera netra uum ellov	ted ate n cha ws,	in the amber	Need collimators		PEP-II collimator is optimiz produces a lot of transve	zed but still erse fields Moter from 74 Collimator Collimator or HCM Power in Absorber Seam protism nar Collim Collimator

HOMs Absorbers

S. Novokhatski

Sasha Novokhatski "RF and HOMs absorbers'

3

-350 -250

-200

-150

-100

-50

150

200

250

Synchrotron light options @ SuperB

- Comparison of brightness and flux from undulators for different energies dedicated SL sources & SuperB HER and LER
- Light properties from undulators better than most SL

Collider Parameters are "stable"

		Base Line		Low Er	nittance	High (Current	Tau-charm		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	
LUMINOSITY	сш ⁻² s ⁻¹	1.00E+36		1.00	E+36	1.00E+36		1.00E+35		
Energy	GeV	GeV 6.7 4.18		6.7	4.18	6.7	4.18	2.58	1.61	
Circumference	ш	125	8.4	12:	58.4	12	58.4	125	8.4	
X-Angle (full)	mrad	6	б	ć	i6	(56	6	5	
β _x @ IP	сш	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
β _y @ IP	сш	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	96	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
Emittance x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	
Emittance y	рш	5	6.15	2.5	3.075	10	12.3	13	16	
Bunch length (full current)	mm	5	5	5	5	4.4	4.4	5	5	
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	
Buckets distance	#	1	2		2		1	1		
Ion gap	96	1	2		2		2	2	1	
RF frequency	MHz	47	6.	42	76.	4	76.	47	б.	
Revolution frequency	MHz	0.2	38	0.2	238	0.238		0.238		
Harmonic number	#	19	98	19	98	1998		1998		
Number of bunches	Ħ	97	78	9	978		1956		1956	
N. Particle/bunch (10 ¹⁰)	#	5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37	
$\sigma_{\rm x}$ effective	μm	165.22	165.30	165.22	165.30	145.60	145.78	166.12	166.67	
σ _y @ IP	μш	0.036	0.036	0.021	0.021	0.054	0.0254	0.092	0.092	
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
Σ_{t} effective	μm	233	.35	233	3.35	20	5.34	233	.35	
Σ _y	μш	0.0	50	0.0	030	0.	076	0.1	31	
Hourglass reduction factor		0.9	50	0.9	950	0.	950	0.9	50	
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
Tune shift y		0.097	0.097	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	
Longitudinal damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.17	
Momentum compaction (10 ⁻⁴)		4.36	4.05	4.36	4.05	4.36	4.05	4.36	4.05	
Energy spread (10 ⁻⁴) (full current)	dE/E	6.43	7.34	6.43	7.34	6.43 7.34		6.43 7.34		
CM energy spread (10*)	dE/E	5	.0	5	.0	5.0		5.0		
Total lifetime	min	4.23	4.48	3.05	3	7.08	7.73	11.4	6.8	
Total RF Wall Plug Power	MW	16	.38	12	37	28	.83	2.8	81	

SUPERB COLLIDER PROGRESS REPORT

52ne 8,2011

New PDG table for SuperB HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders (III)

Updated in early 2010 with numbers received from representatives of the colliders (contact J. Beringer, LBNL). For existing (future) colliders the latest achieved (design) values are given. Quantities are, where appropriate, r.m.s.; H and V indicate horizontal and vertical directions; s.c. stands for superconducting.

	KEKB (KEK)	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)	
Physics start date	1999	1999	TBD	2014 ?	
Physics end date	_	2008	_	_	
Maximum beam energy (GeV)	e ⁻ : 8.33 (8.0 nominal) e ⁺ : 3.64 (3.5 nominal)	$\begin{array}{l} e^-: \ 7{-}12 \ (9.0 \ {\rm nominal}) \\ e^+: \ 2.5{-}4 \ (3.1 \ {\rm nominal}) \\ ({\rm nominal} \ E_{\rm CB1} = 10.5 \ {\rm GeV}) \end{array}$	$e^{-}: 4.2$ $e^{+}: 6.7$	$e^{-:}_{e^{+:}}$ 7 $e^{+:}_{i}$ 4	
Luminosity $(10^{30} \text{ cm}^{-2}\text{s}^{-1})$	21083	12069 (design: 3000)	$1.0 imes 10^6$	8×10^5	
Time between collisions (μs)	0.00590 or 0.00786	0.0042	0.0042	0.004	
Full crossing angle (μ rad)	$\pm 11000^{\dagger}$	0	± 33000	± 41500	
Energy spread (units 10 ⁻³)	0.7	e^{-}/e^{+} : 0.61/0.77	e^{-}/e^{+} : 0.73/0.64	e^{-}/e^{+} : 0.58/0.84	
Bunch length (cm)	0.65	e^-/e^+ : 1.1/1.0	0.5	$e^-/e^+: 0.5/0.6$	
Beam radius (µm)	H: 124 (e ⁻), 117 (e ⁺) V: 0.94	H: 157 V: 4.7	H: 8 V: 0.04	e^{-} : 11 (H), 0.062 (V) e^{+} : 10 (H), 0.048 (V)	
Free space at interaction point (m)	+0.75/-0.58 (+300/-500) mrad cone	± 0.2 , $\pm 300 \text{ mrad cone}$	± 0.35	$\begin{array}{c} e^-:+1.20/-1.28, e^+:+0.78/-0.73\\ (+300/{-500}) \mbox{ mrad cone} \end{array}$	
Luminosity lifetime (hr)	continuous	continuous	continuous	continuous	
Turn-around time (min)	continuous	continuous	continuous	continuous	
Injection energy (GeV)	e^{-}/e^{+} : 8/3.5	2.5 - 12	e^-/e^+ : 4.2/6.7	$e^{-}/e^{+}:7/4$	
Transverse emittance (π rad-nm)	e^{-} : 24 (57 [*]) (H), 0.61 (V) e^{+} : 18 (55 [*]) (H), 0.56 (V)	e^{-} : 48 (H), 1.5 (V) e^{+} : 24 (H), 1.5 (V)	e^{-} : 2.5 (H), 0.006 (V) e^{+} : 2.0 (H), 0.005 (V)	5 (H), 3 (V)	
β^* , amplitude function at interaction point (m)	$\begin{array}{l} e^{-:} \ 1.2 \ (0.27^{*}) \ (H), \ 0.0059 \ (V) \\ e^{+:} \ 1.2 \ (0.23^{*}) \ (H), \ 0.0059 \ (V) \end{array}$	e^- : 0.50 (H), 0.012 (V) e^+ : 0.50 (H), 0.012 (V)	$\begin{array}{l} e^{-:} \ 0.032 \ (H), \ 0.00021 \ (V) \\ e^{+:} \ 0.026 \ (H), \ 0.00025 \ (V) \end{array}$	$e^{-}: 0.025 (H), 3 \times 10^{-4} (V)$ $e^{+}: 0.032 (H), 2.7 \times 10^{-4} (V)$	
Beam-beam tune shift per crossing (units 10^{-4})	e^- : 1020 (H), 900 (V) e^+ : 1270 (H), 1290 (V)	e^- : 703 (H), 498 (V) e^+ : 510 (H), 727 (V)	20 (H), 950 (V)	e^{-} : 12 (H), 807 (V) e^{+} : 28 (H), 893 (V)	
RF frequency (MHz)	508.887	476	476	508.887	
Particles per bunch (units 10 ¹⁰)	e^-/e^+ : 4.7/6.4	e^-/e^+ : 5.2/8.0	$e^-/e^+: 5.1/6.5$	$e^-/e^+: 6.53/9.04$	
Bunches per ring per species	1585	1732	978	2500	
Average beam current per species (mA)	e^-/e^+ : 1188/1637	e^-/e^+ : 1960/3026	e^-/e^+ : 1900/2400	e^-/e^+ : 2600/3600	
Beam polarization (%)	_	_	> 80	_	
Circumference or length (km)	3.016	2.2	1.258	3.016	
Interaction regions	1	1	1	1	
Magnetic length of dipole (m)	$e^-/e^+: 5.86/0.915$	e^-/e^+ : 5.4/0.45	$e^-/e^+: 0.9/5.4$	e^{-}/e^{+} : 5.9/4.0	
Length of standard cell (m)	$e^-/e^+:75.7/76.1$	15.2	40	e^-/e^+ : 75.7/76.1	
Phase advance per cell (deg)	450	e^{-}/e^{+} : 60/90	360 (V), 1080 (H)	450	
Dipoles in ring	e^-/e^+ : 116/112	e^-/e^+ : 192/192	e^-/e^+ : 186/102	$e^{-}/e^{+}: 116/112$	
Quadrupoles in ring	$e^-/e^+: 452/452$	$e^-/e^+: 290/326$	$e^-/e^+: 290/300$	$e^-/e^+:466/460$	
Peak magnetic field (T)	$e^-/e^+: 0.25/0.72$	$e^-/e^+: 0.18/0.75$	e^-/e^+ : 0.52/0.25	$e^-/e^+: 0.22/0.19$	

Possible layout @ Tor Vergata

FF vibrations budget

K. Bertsche

 An overall vibration control design is being developed for the FF magnets. The added measurements of the Frascati site are very encouraging and the fact that the beams tend to move together with QD0 motion has significantly loosened the tolerance requirements on cryostat motion

Element	RMS	Xfer Fn	IP displacement		
	modori		no	with	
			feedback	feedback	
Cryostat linear	< 1 µm	< 0.035	< 35 nm	< 3.5 nm	
Cryostat rotation	< 2 μ rad	0.014 m/rad	< 30 nm	< 3 nm	
Arc quads	< 1 µm	0.03	< 30 nm	< 3 nm	
Total (two rings)			< 78 nm	< 7.8 nm	

- Assumes beam feedback achieves > 10x reduction of motion at IP
 - If motion is kept 10x smaller, may not need beam feedback
- Budget applies to integrated RMS motion > 1 Hz
- June 8,2011 This budget will keep relative Amotion < 8 nm, and lumi loss < 1%

Vibrations

The results of the measurement campaign in Tor Vergata by the Lapp-Annecy Group at the end of April2011 indicates that vibration is not a problem for SuperB even in rush hours. (Well below 1.0 µm amplitude)

Final Quad (QD0) Design: 2 possible choices

200

100 L

0

HER

HER QF1

-2

QF1

Vanadium Permendur "Russian" Design

Air core SC QD0, QF1 "Italian" Design

0

m

-1

HER QD0

QD0

PM

Solenoids

1

QF1

ER

2 M. Sullivan March, 13, 2010 SB_RL_V12_SF8A_3M

3

Prototype in construction Min. thickness

FROZENDENDE

cross section

0.57

Outer winding

Inner winding

Field generated by 2 double helix windings in a grooved Al support

Current adductors

- small space available for the super conductor (SC) and for the thermal stabilization material (Cu+Al)
- the margin to quench is small, however the energy stored by the magnet is small (Inductance ~ 0.3 mH) and a accidental SC to NC transition should not damage the magnet
- A single quadupolar magnet is under construction to determine:
 - the maximum gradient (current) the magnet can safely handle @ 4.2 K
 - the field quality at room temperature
- 200 m of SC wire kindly gifted by Luvata: Φ =1.28 mm, Cu/NbTi = 1.0, Ic 2450 A @ 4T, 4.2K

June 8,2P.1Fabbricatore, S. Farinon, R. Musenich (Genova) Paoloni (Pisa)

Courtesy Mauro Perrella (ASG Genova)

Inner-Outer

iunction

Luvata strand cross section

The QD0

Grooved Al support

Ready this Summer for tests and field measurements @ CERN

June 8,2011

M.A.Giorgi

Detector Overview

- Detector design well advanced
 - Based on BaBar "prototype"
 - CDR (2007) <u>http://web.infn.it/superb/images/stories/upload_file/superb-</u> <u>cdr.pdf</u>
 - Detector Progress Report(2010): http://arxiv.org/abs/1007.4241
- Remaining Generic Detector Options to be decided following Detector Geometry Task Force reports and DGWG studies
- Proto-Detector Organization is in place. Needs to be enhanced/modified as collaboration develops.
- R&D ongoing across detector systems allow final designs to proceed.

SuperB Detector (with options)

Detector Evolution- from

• CDR Baseline based on BaBar. It reuses

- Fused Silica bars of the DIRC
- DIRC & DCH Support
- Barrel EMC CsI(TI) crystals and mechanical structure
- Superconducting coil & flux return (with some redesign).
- Some elements have aged and need replacement. Others require moderate improvements to cope with the high luminosity environment, the smaller boost (4x7 GeV), and the high DAQ rates.
 - Small beam pipe technology
 - Thin silicon pixel detector for first layer, and a new 5 layer SVT.
 - New DCH with CF mechanical structure, modified gas and cell size
 - New Photon detection for DIRC fused silica bars
 - Possible Forward PID system (TOF in Baseline option)
 - New Forward calorimeter crystals (LYSO).Backward veto
 - Minos-style extruded scintillator for instrumented flux return
 - Electronics and trigger- x100 real event rate
 - Computing- to handle massive date volume

Detector Modeled

Background Rates as expected from preliminary studies

	Cross section	Evt/bunch xing	Rate	Generator
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~850	0.3THz	BBBrem
e⁺e⁻ pair production	~7.3 mbarn	~18	7GHz	Diag36
e ⁺ e ⁻ pair (seen by L0 @ 1.5 cm)	~0.3 mbarn	~0.8	0.3GHz	Diag36
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz	Bhabhayaga/B Hwide
Y(4S)	O(10⁻ ⁶) mbarn	~2.5/Million	1 KHz	
	Loss rate	Loss/bunch pass	Rate	
Touschek	14 kHz / bunch	~6/100	~14 MHz	Star (M.Boscolo)

- Primary Background Particle will eventually hit the beam pipe showering in the surrounding material
- Ad hoc Monte Carlo generator for primary particles
- Geant4 Based full simulation code for the simulation of the interaction of primary particles with the material

- Smaller machine asymmetry
- → Need a new SVT (very similar to that of the 5 layer BaBar SVT) supplemented by a new layer 0 to measure the first hit as close as possible to the production vertex. Goal is coverage to 300 mrad both forward and backward.
- Beam pipe radius and thickness are crucial to obtain adequate resolution in vertex separation. Options:MAPS, Hybrid Pixels, Striplets (the latter is difficult due to the expected Bhabha occupancy)

Drift Chamber on Babar concept : no major R&D. But: lighter structure (carbon fiber), dome shaped end plates with x 2% (Babar was 13-16%

Forward EMC

• Forward Endcap EMC

Inner BaBar Crystals are radiation damaged. Need replacement.
At forward angles in SuperB, CsI(TI) is too slow (occupancy) and radiation soft.
Propose LYSO.

Vertex Detector (SVT)

Bergamo Bologna Milano Pavia Pisa Strasbourg Torino Trieste QMUL (TBC)RAL

in BABAR

SVT

- Sustainable background hit rate (radius) depends on technology: striplets vs pixel area and readout chip.
- 1. Development of pixel chip readout architecture continue: data push and triggered with target 100MHz/cm2 (safety x5 included) with timestamp 100 ns. → radius ~1.3cm
- 2. Evaluate efficiency of FSSR2 readout chip (striplets) vs rate (goal still 100 MHz/cm2):
 - Verilog simulation results not very encouraging! Significant drop in efficiency ~ 20 MHz/cm2
 - Need to interact with Fermilab designers to understand if this is a real issue and in case if modification to digital part is possible.
- 3. Started to investigate alternative option for striplets readout chip.

DCH Baseline Design

- Provides precision momentum
- Provides particle ID via dE/dx for all low momentum tracks, even those that miss the PID system.
- A new DCH (similar to now aged BaBar DCH, which must be replaced)
 - Similar gas & cell shape (small improvements may be possible)
 - Carbon Fiber end plates (to reduce material before endcaps)
 - New electronics with location optimized.
- R&D Issues including:
 - Electronics location and/or mass to reduce effect on backward EMC,
 - Low Mass Endplates
 - Can we do better on dE/dx (counting clusters)?
 - Conical/stepped endplates or other ways to reduce sensitivity close to the beam.
 - Background simulation/shielding optimization.
- R&D has been started.
- Need to test all solutions on prototype,

Canada (UBC,Victoria, McGill, Un. Montreal) LNF

DCH

Particle ID

•Baseline is to reuse BaBar DIRC barrel-only design.

- Excellent performance to 4 GeV/c.
- Robust operation.
- Elegant mechanical support.
- Photon detectors outside field region.
- Radiation hard fused silica radiators.
- But...PMTs are slow and aging. Need replacement. Large SOB region senstive to backgrounds so volume reduction is desirable.
- Photon detector replacement
 - •Baseline... Use pixelated fast PMTs with a smaller SOB to improve background performance by ~x50-100 with ~ identical PID performance.

•Several other photon detector options are considered in the CDR.

OPTIONS for the Forward PID

•Modest solid angle but event acceptance for "veto physics" or decays with multiple particles (e.g., $B \rightarrow K_s KK$) scale much faster than linearly. Physics case needs to be established.

- •Not just a PID problem. Overall detector optimization required.
 - Adds material before EMC.
 - Takes space from tracking or EMC.

•Aerogel RICH and Very Fast Cherenkov-based TOF seem plausible.

- •Space requirements.
- Fast tubes have substantial material. SiPMs are noisy and neutron sensitive.
- R&D underway

Particle ID

•Baseline is to reuse BaBar DIRC barrel-only design.

- Excellent performance to 4 GeV/c.
- Robust operation.
- Elegant mechanical support.
- Photon detectors outside field region.
- Radiation hard fused silica radiators.
- •But...PMTs are slow and aging. Need replacement. Large SOB region senstive to backgrounds so volume reduction is desirable.

Photon detector replacement

•Baseline... Use pixelated fast PMTs with a smaller SOB to improve background performance by ~x50-100 with ~ identical PID performance.

•Several other photon detector options are considered in the CDR.

OPTIONS for the Forward PID

•Modest solid angle but event acceptance for "veto physics" or decays with multiple particles (e.g., $B \rightarrow K_s KK$) scale much faster than linearly. Physics case needs to be established.

•Not just a PID problem. Overall retector optimization required.

- •Adds material before EMC.
- Takes space from tracking om MC.

•Aerogel RICH and Very Fast Cherenkov-based TOF seem plausible.

- •Space requirements.
- Fast tubes have substantial material. SiPMs are noisy and neutron sensitive.
- R&D underway

Barrel PID

(b) Its equivalent in the GEANT 4 MC model.

Figure 17: Barrel FDIRC Design.

DPR Design

SLAC Padova Maryland LAL Orsay LPHNE
Forward PID option

Forward PID option

Decision about forward PID has not been taken yet. It is one of the issues in the agenda of the coming General SuperB Collaboration Meeting (Caltech December 14-18).

One benchmark is $B \rightarrow K^{(*)} \nu \overline{\nu}$.

If decision would be **YES** to Forward PID then there are two options: **TOF**

BINP

Slac

Padova

Forward & Backward Calorimeter

The SuperB calorimeter will reuse the Babar barrel of CsI crystals. In the forward endcap CsI will be repleed with YLSO crystals, while for the backward the solution is lead+scintillating fibers 2.8 mm Pb alternated with scintillator for different layers there are different

patterns :

- Right handed logarithmic spiral
- Left-handed logarithmic spiral ٠
- Radial wedge ۲

The readout fibers are embedded in grooves cut in scintillator.

As Photo-Detector a pixel device will be used Either MPPC or SiPM.

Figure 27: The backward EMC, showing the scintillator strip geometry for pattern recognition.

Bergen

IFR Advancements): Simulations

Fast Simulation

PID tables for muons and pions, based on optimization results, are in preparation and will replace the BaBar tables in the next event production

Detector Optimization

Added and tested a 9-layers configuration Started with K_L study.

Background studies Neutron background analysis continues with the study of possible shielding and remediation: added polyethylene shielding, investigating the possibility to move the

investigating the possibility to move the SiPM of the inner layers in a outer gap.

Baseline Design from DPR

Figure 34: Overview of the ETD and Online global architecture

Systems with not yet assigned responsibilities

Technologies and Responsibilities should be agreed as soon as possible

Proto Technical Coordination

Detector Coordinators – B.Ratcliff, F. Forti Technical Coordinator – W.Wisniewski

- SVT G. Rizzo
- DCH G. Finocchiaro, M.Roney
- PID N.Arnaud, J.Vavra
- EMC F.Porter, C.Cecchi
- IFR R.Calabrese
- Magnet W.Wisniewski
- Electronics, Trigger, DAQ D. Breton, U. Marconi
- Online/DAQ S.Luitz
- Offline SW
 - Simulation coordinator D.Brown
 - Fast simulation M. Rama
 - Full Simulation/Computing F. Bianchi
- Background simulation M.Boscolo, E.Paoloni
- Rad monitor –
- Lumi monitor –
- Polarimeter -
- Machine Detector Interface –
- Mechanical Integration Team F. Rafelli, W. Wisniewski, System Reps
- Central Electronics Team -
- +DGWG A. Stocchi, M. Rama
- +Geometry Selection Task Forces- H. Jawahery, W. Wisniewski

Preparation of TDR INFR/AB_10/2, 1AL-12

SuperBProgress Reports

Physics

arXiv:1008.1541v1

SuperB Progress Reports

The Collider

arXiv:1007.4241

SuperBProgress Reports

> Physics Accelerator Detector

arXiv:1009.6178v1

Since September 2010 the three SuperB Progress Reports have been published, it was an important step forward to the completion of the TDR, in time during 2011. Machine parameters are fixed including the tunnel length, a Physics update after the 2008 Valencia document, the Detector is almost frozen.

The XVII SuperB Workshop and Kick off Meetiing

		11:00 SML 30 30 30	PLENARY KICK-OFF DAY Status of the SuperB Project (R.Petronzio) SuperB e il Piano Nazionale della Riberca (A.Agostini) SuperB nel Campus dell'I Iniversità	KIC	K-OF	F DAY	
		30	di Tor Vergata (P.Masi) SuperB as High Brilliance Light Source (E. Di Fabrizio)			Tuesday,May	<mark>/ 31, 2011</mark>
		13:30	Lunch - Fuoco di Bosco	7	15.30	Special MINI-PLENARYY	
		30	KICK-OFF DAY The European Strategy Session and the New Particle Physics Roadmap (S. Stapnes) Super Flavour Collires and ECFA (T. Nakada)	• –			
				-			
17:00	The LHC(B) Discovery Potential (20') (Slides 🚺)					Guy Wilkinson (University of Oxford)	
17:20	The Super-KEKB and Belle-II Projects (20') (ဲ Slides 🖾 📓) Peter Krizan (Ljubljana Univ. and J. Stefan Institute)						
17:40	The BINP Super Tau-Charm Factory (20) (ဲ Slides 🗖)					∨ladimir Druzhinin (<i>BINP, Novosibirsk, Russi</i> a)	
18:00	The BES-III Project (20) (🌬 Slides 🔼) Hai-Bo Li						
		18:45 SML	PLENARY Experiment Collaboration Forming				

Real Kick-Off

Real Kick-Off

END