

Prospects on angular analysis at LHCb

Lucia Grillo

with input from Biljana Mitreska, Greg Ciezarek, and others

Open LHCb workshop on semileptonic exclusive b \rightarrow c decays

12-14 April 2023

Angular analyses of semileptonic b-hadron decays

13/04/2023

$$\frac{d^4(B^0 \to D^* \ell^+ \nu_\ell)}{dq^2 d\cos^2 \theta_\ell d\cos \theta_{D^*} d^{\chi}} \propto |V_{cb}|^2 \sum_i \mathcal{H}_i(q^2) f_i(\theta_\ell, \theta_{D^*}, \chi)$$

(Electroweak) couplings + QCD encompassed by Form Factors

- Helicity angles distributions (and derived observables) are sensitive to New Physics contributions and hadronic interactions (Form Factors)
- Angular analyses: New Physics searches, complementary to Lepton Universality tests
- Hadronic Form Factors measurements
- In this talk: latest results and ongoing $H_b \to H_c \ell \nu$ studies at LHCb

Semileptonic decays (@LHCb
	Non-reconstructable neutrino(s)
Primary Vertex (pp collision) Decay Vertex	Vezz
	$\sum_{n}^{D} \pi^{-}$
	$\pi^ K^+$

- Partial reconstruction → unconstrained kinematics: (with a single missing particle we can solve for the missing 3-momentum, with a quadratic ambiguity)
- Partial reconstruction → large backgrounds: need to fully exploit vertex topology information, track isolation, available kinematic information
- Millions of signal candidates already collected
- All b-hadron species you can dream of Not included in this talk: other exclusive decays (baryons: complementary spin-structure) !

A word about the leptons

- Muons: easier to detect, semi-muonic samples are fairly clean
- Taus @LHCb: muonic decay (direct comparison with Hb→Hcµv) or hadronic (3prong) decay: better constrained kinematics using the tau decay verses
- Electrons @LHCb: fewer electrons than muons (lower selection efficiency) and with worse resolution (Bremsstrahlung) - but less noticeable once you have already unconstrained kinematics

On-going efforts using all leptons!

Backgrounds

 $B^0 \to D^{(*)} \tau \nu$

- Analyses with taus: background dominated
- Essential use of track isolation and control regions to describe the sample composition

Large samples & a variety of decay modes

Differential measurements

- Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ decay rate
- Fully reconstruct $D_s^{*-} \rightarrow D_s^- \gamma$

Signal yield measured in bins of hadronic recoil parameter $w = v_{B_s^0} \cdot v_{D_s^{*-}}$

> data $B_{s}^{0} \rightarrow D_{s}^{*-}\mu^{+}\nu_{\mu}$ $B_{s}^{0} \rightarrow D_{s}^{*-}\tau^{+}\nu_{\tau}$ $H_{b} \rightarrow D_{s}^{*-}X_{c}$ combinatorial $B_{s}^{0} \rightarrow D_{s1}^{-}l^{+}\nu_{l}$

JHEP 12 (2020) 144

Open LHCb workshop on semileptonic exclusive $b \rightarrow c$ decays

JHEP 12 (2020) 144

4500 5000 $m_{\rm corr} \, [{\rm MeV/c^2}]$ 7

3.7

2.8

0.5

0.2

0.2

0.9

0.1

0.0

0.3

0.4

4.8

3.4

Hadronic Form Factors measurements

$$\begin{aligned} \frac{d\Gamma(B^0 \to D^* \mu^+ \nu_{\mu})}{dq^2} &= \frac{G_F^2 |V_{cb}|^2 |\eta_{EW}|^2 |\vec{p}| q^2}{96\pi^3 m_{B^0}^2} \left(1 - \frac{m_{\mu}^2}{q^2}\right) \\ \times \left[\left(|H_+|^2 + |H_+|^2 + |H_0|^2\right) \left(1 - \frac{m_{\mu}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\mu}^2}{q^2} |H_t|^2 \right] \\ r &= m_{D_s^*} / m_{B_s^0} \\ z(w) &= \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \end{aligned} \qquad H_0 = \frac{\mathscr{F}_1(w)}{m_{B_s^0} \sqrt{1 + r^2 + 2wr}} \\ H_{\pm} &= f(w) \mp m_{B_s^0} m_{D_s^*} \sqrt{w^2 - 1} g(w) \end{aligned}$$

$$H_{t} = m_{B_{s}^{0}} \frac{\sqrt{r(1+r)}\sqrt{w^{2}-1}}{\sqrt{1+r^{2}-2wr}} \mathcal{F}_{2}(w)$$

CLN fit

 $f(z) = \frac{1}{P_{1+}(z)\phi_{f}(z)} \sum_{n=0}^{\infty} a_{n}^{f} z^{n}$ $g(z) = \frac{1}{P_{1-}(z)\phi_{g}(z)} \sum_{n=0}^{\infty} a_{n}^{g} z^{n}$ $\mathscr{F}_{1}(z) = \frac{1}{P_{1+}(z)\phi_{\mathscr{F}_{1}}(z)} \sum_{n=0}^{\infty} a_{n}^{\mathscr{F}_{1}} z^{n}$ $\mathscr{F}_{2}(z) = \frac{\sqrt{r}}{(1+r)P_{0-}(z)\phi_{\mathscr{F}_{2}}(z)} \sum_{n=0}^{\infty} a_{n}^{\mathscr{F}_{2}} z^{n}$

13/04/2023

- Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ decay rate
 - Fully reconstruct $D_s^{*-} \rightarrow D_s^- \gamma$
 - Signal yield measured in bins of hadronic recoil parameter $w = v_{B_s^0} \cdot v_{D_s^{*-}}$

Unfolded fit Unfolded fit with massless leptons Folded fit	$\rho^{2} = 1.16 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.17 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.14 \pm 0.04 \pm 0.07$
BGL fit	
Unfolded fit	$a_1^f = -0.005 \pm 0.034 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.19} + 0.00$
Folded fit	$a_1^f = 0.039 \pm 0.029 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.13} + 0.00$

BGL

Hadronic Form Factors measurements

- Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ CL decay rate
 - Fully reconstruct $D_s^{*-} \rightarrow D_s^- \gamma$

HEP 12 (2020) 144

Signal yield measured in bins of hadronic recoil parameter $w = v_{B_s^0} \cdot v_{D_s^{*-}}$

l	CLN fit	
	Unfolded fit Unfolded fit with massless leptons Folded fit	$\rho^{2} = 1.16 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.17 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.14 \pm 0.04 \pm 0.07$
•	BGL fit	
·	Unfolded fit	$a_1^f = -0.005 \pm 0.034 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.19} + 0.00_{-0.38}$
	Folded fit	$a_1^f = 0.039 \pm 0.029 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.13} + 0.00_{-0.34}$

Already a few analyses

sensitive to hadronic FF

First measurement of $|V_{cb}|$ using $B^0_s ightarrow D^{(*)-}_s \mu^+ \nu_\mu$

- Measure rate relative to $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$
- Requires external inputs for $|V_{cb}|$
- Measurement of decay rate as a function of $p_{\perp}(D_s^-)$, proxy for q^2 or recoil w ($D_s^{(\ast)-}$ energy in the B_s^0 rest frame)

More details in Ricardo's talk

Parameter		I	Value	
$ V_{cb} $ [10 ⁻³]	42.3	± 0.8	$(\text{stat}) \pm 1.2$	(ext)
$\mathcal{G}(0)$	1.097	± 0.034	$(\text{stat}) \pm 0.001$	(ext)
d_1	-0.017	±0.007	$(\text{stat}) \pm 0.001$	(ext)
d_2	-0.26	± 0.05	$(\text{stat}) \pm 0.00$	(ext)
$b_1 a_1^f$	-0.06	± 0.07	$(\text{stat}) \pm 0.01$	(ext)
$a_0 a_0^g$	0.037	±0.009	$(\text{stat}) \pm 0.001$	(ext)
$a_1 a_1^g$	0.28	± 0.26	$(\text{stat}) \pm 0.08$	(ext)
$c_1 a_1^{\mathcal{F}_1}$	0.0031	± 0.0022	$2(\text{stat}) \pm 0.0006$	$\delta(\mathrm{ext})$

parameters

Sensitivity to hadronic form factors also from many more measurements, e.g. LFU ratios (dedicated measurements being worked on) <u>LHCb-PAPER-2022-039</u>

Expanding differential measurements

- Fully differential decay rate in q^2 (or w) and helicity angles
- Resolutions (worst case: rest frame approximation)

Expanding differential measurements

- $B^0 \to D^* \mu \nu$ decays
- Solution of quadratic equation (solid) compared to
 B rest frame approximation (dashed)

Let's start from the muons, considerably easier test bench for the analyses (kinematic constraints, backgrounds, statistics)

Expanding differential measurements

Fully differential decay rate

 $\nabla \mathcal{N} * \mathcal{I}$

 $J\Gamma(D)$

 Helicity angles (and derived observables) are sensitive to New Physics contributions and hadronic interactions (Form Factors)

 $3m^3m^2$ C²

13/04/2023

$$\frac{d\Gamma(B \to D^+ t^- t^-)}{dwd\cos\theta_{\ell}d\cos\theta_{d}d\chi} = \frac{3m_{B}m_{D^*} \mathcal{O}_{F}}{16(4\pi)^4} \eta_{EW} |V_{cb}|^2 \sum_{i} \mathscr{H}_{i}(w) k_{i}(\theta_{\ell}, \theta_{D}, \chi)$$

$$\frac{i - \mathcal{H}_{i}(w) - \frac{k_{i}(\theta_{\mu}, \theta_{D}, \chi)}{D^* \to D\gamma} - \frac{D^* \to D\pi^0}{D^* \to D\pi^0}$$

$$\frac{1 - H_{+}^2}{2 - H_{-}^2} - \frac{1}{2}(1 + \cos^2\theta_{D})(1 - \cos\theta_{\mu})^2 - \frac{\sin^2\theta_{D}(1 - \cos\theta_{\mu})^2}{2 - \sin^2\theta_{D}(1 + \cos\theta_{\mu})^2} - \frac{\sin^2\theta_{D}(1 + \cos\theta_{\mu})^2}{2 - \sin^2\theta_{D}\sin^2\theta_{\mu}} - \frac{4\cos^2\theta_{D}\sin^2\theta_{\mu}}{4 - H_{+}H_{-}} - \frac{\sin^2\theta_{D}\sin^2\theta_{\mu}\cos2\chi}{5 - H_{+}H_0} - \sin^2\theta_{D}\sin\theta_{\mu}(1 - \cos\theta_{\mu})\cos\chi - 2\sin^2\theta_{D}\sin\theta_{\mu}(1 - \cos\theta_{\mu})\cos\chi}$$

6

Full description using the possible three helicity states of the D* - measuring the angular coefficients does not separate hadronic and NP effects, but also doesn't make assumptions

• Measuring the 12 angular coefficients (integrating in q^2) currently pursued for $B \rightarrow D^* lv...$

Angular coefficients and CP violating observables

 $\frac{d\Gamma(B \to D^* \ell \nu)}{dw d\cos\theta_\ell d\cos\theta_d d\chi} = (P_{\text{even}} + P_{\text{odd}})$

• $P_{\text{odd}} \equiv 0$ in SM, but can have non-zero terms in NP:

	Amplitude term	Coupling	Angular function
~	$\operatorname{Im}(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})$	$\text{Im}[(1+g_L+g_R)(1+g_L-g_R)^*]$	$-\sqrt{2}\sin 2\theta_{\ell}\sin 2\theta_{D}\sin \chi$
\rightarrow	$\operatorname{Im}(\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*})$	$\mathrm{Im}[(1+g_L-g_R)(1+g_L+g_R)^*]$	$2\sin^2 heta_\ell\sin^2 heta_D\sin 2\chi$
	$\operatorname{Im}(\mathcal{A}_{SP}\mathcal{A}^*_{\perp,T})$	${ m Im}(g_Pg_T^*)$	$-8\sqrt{2}\sin\theta_{\ell}\sin2\theta_{D}\sin\chi$
\nearrow	$\operatorname{Im}(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{*})$	$Im[(1 + g_L - g_R)(1 + g_L + g_R)^*]$	$-2\sqrt{2}\sin\theta_{\ell}\sin2\theta_{D}\sin\chi$

Right-handed vector

Interference of pseudo scalar and tensor currents

Express sinx using the momenta of reconstructible decay products and B momentum estimate for quadratic eq.

 $\sin\chi = S_1 \cdot (\overrightarrow{p}_{\pi}, \overrightarrow{p}_{\mu}, \overrightarrow{p}_D) + S_2 \cdot (\overrightarrow{p}_B, \overrightarrow{p}_{\mu}, \overrightarrow{p}_D) + S_3 \cdot (\overrightarrow{p}_{\pi}, \overrightarrow{p}_B, \overrightarrow{p}_D) + S_4 \cdot (\overrightarrow{p}_{\pi}, \overrightarrow{p}_{\mu}, \overrightarrow{p}_B)$

sinx is P-odd and can be used as per-event weight to cancel out the P-even contribution in data

V. Dedu and A. Poluektov, arXiv:2304.00966

Angular coefficients and CP violating observables

 $\frac{d\Gamma(B \to D^* \ell \nu)}{dw d\cos\theta_{\ell} d\cos\theta_{d} d\chi} = (P_{\text{even}} + P_{\text{odd}})$

- Dedicated analysis optimised for CPV observables
- Statistical sensitivity with Run1+2 $B^0 \rightarrow D^* \mu \nu$ sample :~1% for Im(gR), 0.1% Im(gPgT*)
- A number of possible systematic uncertainties estimated: double-charm and D** backgrounds, detection asymmetry and detector misalignment

More in Anton's talk

VELO misalignment $T_v = 10 \mu m$ $Im(g_R) = 0.1$).04 (in χ weight) -0.02 -0.00 $\cos \theta_D$ Asymmetry $(\sin \chi \text{ weight})$ $\cos \theta_D$ (b) 0.04(a) 0.0050.50.50.020.00 0.00.0 0.000 -0.005-0.5-0.5-0.04-1.0-0.010-1.0-0.5-1.00.00.5-0.50.00.51.0-1.01.0 $\cos \theta_{\ell}$ $\cos \theta_{\ell}$ $\begin{array}{ccc} & -0.00 \\ & 0.00 \\ & 0.00 \\ \text{Asymmetry (sin 2<math>\chi \text{ weight)} \\ & \cos \theta_D \end{array}$ $\cos \theta_D$ 1.00.04(d) (c) 0.0050.50.50.020.000.000 0.0 0.0-0.5-0.5-0.04 $^{-1.0}_{-1.0}$ -0.010-0.50.00.5-0.50.00.51.01.0

 $\cos \theta_{\ell}$

 $\cos \theta_{\ell}$

V. Dedu and A. Poluektov, arXiv:2304.00966

EFT: Modelling New Physics (and hadronic) effects

What if we want to tell apart all possible NP contributions(s)

- HAMMER tool (F. Bernlochner, S. Duell, Z. Ligeti, M. Papucci, D. Robinson, <u>Eur. Phys. J. C 80, 883 (2020)</u>) to re-weight MC events and obtain "dynamic" templates, (for-)folding in the experimental resolution
- Extract Wilson Coefficients and hadronic Form Factor parameters from a fit to data (<u>JINST 17 T04006</u>)

13/04/2023

Effective operators

LHCb Simulation

0.5

LHCb Simulation

2

χ [rad]

 $\cos(\theta_1)$

0

0

 $\times 10^{\circ}$

100

80

60

40

20

0

250000 [[11]

_60000

<u>3</u>0000

00004g

× ±30000

20000

10000

-0.5

-2

Events / (0.4)

19

 $B^0 \rightarrow D^{(*)} \mu \nu$ Ongoing angular analyses

- Different strategies considered:
- Measure directly Wilson Coefficients
- Measure angular coefficients (depend on amplitudes - q² dependence) which relate to the Wilson Coefficients

$$\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{d}d\cos\theta_{\ell}d\chi} \propto I_{1c}\cos^{2}\theta_{d} + I_{1s}\sin^{2}\theta_{d} \\ + \left[I_{2c}\cos^{2}\theta_{d} + I_{2s}\sin^{2}\theta_{d}\right]\cos2\theta_{\ell} \\ + \left[I_{6c}\cos^{2}\theta_{d} + I_{6s}\sin^{2}\theta_{d}\right]\cos\theta_{\ell} \\ + \left[I_{3}\cos2\chi + I_{9}\sin2\chi\right]\sin^{2}\theta_{\ell}\sin^{2}\theta_{d} \\ + \left[I_{4}\cos\chi + I_{8}\sin\chi\right]\sin2\theta_{\ell}\sin2\theta_{d} \\ + \left[I_{5}\cos\chi + I_{7}\sin\chi\right]\sin\theta_{L}\sin2\theta_{d}$$

CP-violating observables

 $\begin{aligned} \mathcal{H}_{eff} &= \frac{G_F}{\sqrt{2}} V_{cb} \sum_i C_i \mathcal{O}_i \\ &= \frac{G_F}{\sqrt{2}} V_{cb} \Big[(1 + g_V) \bar{c} \gamma_\mu b + (-1 + g_A) \bar{c} \gamma_\mu \gamma_5 b \\ &+ g_S i \partial_\mu (\bar{c} b) + g_P i \partial_\mu (\bar{c} \gamma_5 b) \\ &+ g_T i \partial^\nu (\bar{c} i \sigma_{\mu\nu} b) + g_T _5 i \partial^\nu (\bar{c} i \sigma_{\mu\nu} \gamma_5 b) \Big] \\ &\bar{\ell} \gamma^\mu (1 - \gamma_5) \nu_\ell + h.c. \end{aligned}$

Current	WC Tag	WC	$4 ext{-}\mathrm{Fermi}/(i2\sqrt{2}V_{cb}G_F)$
SM	SM	1	$\left[ar{c}\gamma^{\mu}P_{L}b ight]\left[ar{\ell}\gamma_{\mu}P_{L} u ight]$
	V_qLlL	$\chi^V_L\lambda^V_L$	$\left[ar{c}\chi_{L}^{V}\gamma^{\mu}P_{L}b ight]\left[ar{\ell}\lambda_{L}^{V}\gamma_{\mu}P_{L} u ight]$
Vector	V_qRlL	$\chi^V_R\lambda^V_L$	$\left[ar{c}\chi^V_R\gamma^\mu P_Rb ight]\left[ar{\ell}\lambda^V_L\gamma_\mu P_L u ight]$
	V_qL1R	$\chi^V_L\lambda^V_R$	$\left[ar{c}\chi_{L}^{V}\gamma^{\mu}P_{L}b ight]\left[ar{\ell}\lambda_{R}^{V}\gamma_{\mu}P_{R} u ight]$
	V_qR1R	$\chi^V_R\lambda^V_R$	$\left[ar{c}\chi^V_R\gamma^\mu P_Rb ight]\left[ar{\ell}\lambda^V_R\gamma_\mu P_R u ight]$
	S_qLlL	$\chi^S_L\lambda^S_L$	$ig[ar{c}\chi^S_L P_L big]ig[ar{\ell}\lambda^S_L P_L uig]$
Scalar	S_qRlL	$\chi^S_R\lambda^S_L$	$\left[ar{c}\chi^S_R P_R b ight] \left[ar{\ell}\lambda^S_L P_L u ight]$
Sounda	S_qL1R	$\chi^S_L\lambda^S_R$	$\left[ar{c}\chi^S_L P_L b ight] \left[ar{\ell}\lambda^S_R P_R u ight]$
	S_qR1R	$\chi^S_R\lambda^S_R$	$\left[ar{c}\chi^S_R P_R b ight] \left[ar{\ell}\lambda^S_R P_R u ight]$
Tonsor	T_qLlL	$\chi^T_L\lambda^T_L$	$\left[ar{c}\chi_{L}^{T}\sigma^{\mu u}P_{L}b ight]\left[ar{\ell}\lambda_{L}^{T}\sigma_{\mu u}P_{L} u ight]$
Tensor	T_qR1R	$\chi^T_R\lambda^T_R$	$\left[ar{c}\chi_R^T\sigma^{\mu u}P_Rb ight]\left[ar{\ell}\lambda_R^T\sigma_{\mu u}P_R u ight]$

An angular analysis of $B^0 ightarrow D^{(*)} \mu u$

- Extract directly Wilson Coefficients and FF parameters from fit to data
- Shape analysis only no attempt to measure $|V_{cb}|$, lose sensitivity to yield changes
- To be considered also as benchmark study/measurement

An angular analysis of $B^0 \to D^{(*)} \mu \nu$

- Extract directly Wilson Coefficients and FF parameters from fit to data
- Shape analysis only no attempt to measure $|V_{cb}|$, lose sensitivity to yield changes
- To be considered also as benchmark study/measurement

- B→D**µv description using BLR parametrisation (<u>arxiv:1711.03110</u>, <u>Phys. Rev. D 95</u>, <u>014022 (2017)</u>) and parameter values from R(D) vs R(D*)
- Despite the small contribution, care needed to choose
 B→D*τν model (and evaluating impact of the choice)
- Data-driven techniques when possible (background from misidentified particles, random track combinations)

 $B^0 \rightarrow D^* \mu \nu$
 $B \rightarrow D^* X$
 $B^0 \rightarrow (D1(H)^+ \rightarrow D^*X) \mu \nu$
 $B^0 \rightarrow (D1(2420)^+ \rightarrow D^*X) \mu \nu$
 $B^0 \rightarrow (D2(2460)^{*+} \rightarrow D^*X) \mu \nu$
 $B^+ \rightarrow (D1(2430)^0 \rightarrow D^*X) \mu \nu$
 $B^+ \rightarrow (D1(2420)^0 \rightarrow D^*X) \mu \nu$
 $B^+ \rightarrow (D2(2460)^{*0} \rightarrow D^*X) \mu \nu$
 $B \rightarrow D^{**}(2S) \mu \nu$
 $B^0 \rightarrow D^* \tau \nu$
 $B \rightarrow D^{**} \tau \nu$
 Combinatorial
 MisID
 $B_s \rightarrow Ds1 \mu \nu$
 $B_s \rightarrow Ds2^{} \mu \nu$
 WSOS

Hadronic Form Factors with full angular analysis

- SM fits: using CLN (<u>Nuclear Physics B 530 (1998) 153-181</u>), BGL (<u>Phys.Rev. D56</u> (1997) 6895-6911) and BLPR parametrisations
- Statistical precision comparable (Run1 only) to latest B-factory measurements (Phys. Rev. D 100, 052007 (2019), Phys. Rev. Lett. 123, 091801 (2019)), and increased (as expected) wrt LHCb R(D*) measurement on same dataset

$f(z) = \frac{1}{P_{1+}(z)\phi_{f}(z)} \sum_{n=0}^{\infty} b_{n}z^{n} \quad \mathscr{F}_{1}(z) = \frac{1}{P_{1+}(z)\phi_{\mathscr{F}_{1}}(z)} \sum_{n=0}^{\infty} c_{n}z^{n}$ $g(z) = \frac{1}{P_{1-}(z)\phi_{g}(z)} \sum_{n=0}^{\infty} a_{n}z^{n} \quad \mathscr{F}_{2}(z) = \frac{1}{P_{0-}(z)\phi_{\mathscr{F}_{2}}(z)} \sum_{n=0}^{\infty} d_{n}z^{n}$ Expected constituity (stat)

	. Expected sensitivity (stat)
Parameter	with Run1 dataset statistics
Δa0	6E-05
∆a1	5E-03
∆a2	8E-02
Δb1	6E-04
Δb2	1E-02
∆c1	8E-05
∆c2	1E-03
∆d0	1E-02
∆d1	3E-01

CLN

	Expected sensitivity (stat)
Parameter	with Run1 dataset
ΔR1	1.5E-02
ΔR2	1.3E-02
ΔR0	1,7E-01
Δρ^2	1.8E-02

CERN-THESIS-2022-105

Hadronic Form Factors with full angular analysis

- Using **BLPR** parametrisation for New Physics (and possibly SM) fits
- Incorporates HQET predictions that relate the FFs for NP matrix elements to the SM ones
- Calculations by F. Bernlochner *et. al.* <u>Phys. Rev. D 95, 115008 (2017)</u>, using both the leading and $O(\Lambda_{QCD}/m_b)$ sub-leading Isgur-Wise function starting values for fit parameters from fit in <u>Phys. Rev. D 95, 115008 (2017)</u> without any experimental inputs
- Intended approach (at least from HAMMER) was SM fit to B→D*µv and use FF HQET parameters as input for NP fit to B→D*τv
- High statistics B→D*µv analysis still useful - need for BGL and/ or also some more general parametrisation (in HAMMER would be great!)

Parameter	Starting value	with Run1 dataset statistics
$\bar{ ho}_*^2$	1.24+/-0.08	O(0.1)
$\hat{\chi_2}(1)$	-0.06+/-0.02	O(0.1)
$\hat{\chi_2}'(1)$	0.0+/-0.02	0.3
$\hat{\chi_3}'(1)$	0.05+/-0.02	0.9*
$\eta(1)$	0.30+/-0.04	0.1
$\eta'(1)$	-0.05+/-0.10	0.5
V_{20}	75	$O(10^2)$

* changes depending on NP scenario

13/04/2023

Expected sensitivity (stat)*

* large correlation between $\Delta \chi$ 3 and $\Delta \rho$ ^2

CERN-THESIS-2022-105

New Physics Wilson Coefficients

- Ideally no assumption about the NP structure (<u>Eur. Phys. J. C 80, 883 (2020</u>))
- In practice easier searches for specific NP models (e.g. Bhattacharya et. al. JHEP 05 (2019) 191)
- Studied different NP scenarios (plan to report fit results for each)

Expected (stat -

	Run1) unce	rtainty			
WC floating	in fit	VqRIL	VqLlL	SqRIL (SqLIL)	TqLlL
	VqRIL	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-2}) \\ \mathcal{R}e \ \mathcal{O}(10^{-2}) \end{array}$			
	VqLlL		$\begin{array}{ccc} \mathcal{I}m \ \mathcal{O}(10^{-1}) \\ \mathcal{R}e \ \end{array}$		
	SqRIL (SqLIL)			$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-1}) \\ \mathcal{R}e \ \mathcal{O}(10^{-1}) \end{array}$	
Uncertainties increase,	TqLlL				$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-3}) \\ \mathcal{R}e \ \mathcal{O}(10^{-3}) \end{array}$
generally within same order of magnitude, → fits less stable	VqRlL+VqLlL+ SqRlL+ TqLlL	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-2}) \\ \mathcal{R}e \ \mathcal{O}(10^{-2}) \end{array}$	$\begin{array}{ccc} \mathcal{I}m & \mathcal{O}(10^0) \\ \mathcal{R}e & \end{array}$	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-1}) \\ \mathcal{R}e \ \mathcal{O}(10^{-1}) \end{array}$	$\begin{array}{c} \mathcal{I}m \ \mathcal{O}(10^{-3}) \\ \mathcal{R}e \ \mathcal{O}(10^{-2}) \end{array}$

25

$B^0 \to D^{(*)} \tau \nu$

- ▶ Ideally shape + rate analysis, i.e. R(D) vs R(D*) determination simultaneous to WC
- Sensitivity studies need to include the full set of (at times poorly known) backgrounds
- Additional observables can be used to constrain NP contributions while preparing/in addition to simultaneous R(D) vs R(D*) and angular analyses (e.g. longitudinal D* polarisation, measured by Belle $F_L^{D^*} = 0.60 \pm 0.08(\text{stat}) \pm 0.04(\text{syst}) \text{ arXiv:1903.03102}, ...)$

Becirevic et.al. arXiv:1602.03030

Well advanced: D* polarisation and angular coefficient analyses

$B^0 \to D^{(*)} \tau \nu$

- Ideally shape + rate analysis, i.e. R(D) vs R(D*) determination simultaneous to WC
- Sensitivity studies need to include the full set of (at times poorly known) backgrounds
- Better angular resolutions when using 3-prong hadronic tau decays

D. Hill et.al., JHEP 11 (2019) 133

Baryons: $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}$

Probing baryonic decays - different spin structure

- Measurement of the shape of the differential decay rate using Run-I dataset
- Low background level and smooth acceptance across decay variables

Lattice Phys. <u>Rev. D92 (2015) 034503</u> (grey band)

13/04/2023

 22965 ± 266

 2975 ± 225

 $(2.74\pm0.02)\times10^{6}$

 1602 ± 95

 $\Lambda_c(2625)^+\mu^-\overline{\nu}_\mu$

 $\Lambda_c(2765)^+\mu^-\overline{\nu}_\mu$

 $\Lambda_c(2880)^+\mu^-\overline{\nu}_\mu$

 $\overline{\Lambda}_c^+ \mu^- \overline{\nu}_\mu X$

27

Baryons:
$$\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}$$

- Study of the sensitivity with collected samples to Real NP Wilson Coefficients for decays with zero and non-zero Ab polarisation
- 2D Fits to q²and cosθµ for zero polarisation case
- Sensitivity compared to global fits to B→D(*)lv
 (M. Jung, D.M. Straub, JHEP 01 (2019) 009)

Free parameters	$pK_{\rm S}^0$ case	$pK^{-}\pi^{+}$ case
C_{V_R}	0.005	0.001
C_{S_R}	0.046	0.018
C_{T_L}	0.020	0.007
C_{S_L}	0.091	0.039
$P_{\Lambda_b^0}$	0.13	_
$lpha_{\Lambda_c^+}$	0.003	_

29

Summary

- Angular analyses of SL decays are possible at LHCb ...
- ... with different challenges with respect to the B factories
- Started developing these analyses mainly from the semi-muonic decays
- More leptons, observables, b-hadrons and decay modes to come!

Back-up

Hadronic Form Factors measurements and $|V_{cb}|$

- Measure rate relative to $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$
- Requires external inputs for $|V_{cb}|$
- Measurement of decay rate as a function of $p_{\perp}(D_s^-)$, proxy for q^2 or recoil w ($D_s^{(*)}$ energy in the B_s^0 rest frame)

$$\frac{dN_{\rm obs}}{dp_{\perp}dm_{corr}} = \mathcal{N}\frac{d\Gamma(|V_{cb}|, h_{A_1}, \ldots)}{dp_{\perp}dm_{corr}} \times \epsilon(p_{\perp}, m_{corr})$$

13/04/2023

 45×10^3

 $^{20}_{15} 87 \text{k} D\mu$

1850

35

30

10E

1800

 $2 \text{ MeV}/c^2$

Candidates per

Measurements of $\left|V_{cb}\right|$ and hadronic form factors

- First measurement of $|V_{cb}|$ using $B_s^0 \to D_s^{(*)-} \mu^+ \nu_{\mu}$
 - Measure rate relative to $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$
 - Requires external inputs for $|V_{cb}|$
 - Measurement of decay rate as a function of $p_{\perp}(D_s^-)$, proxy for q^2 or recoil w ($D_s^{(*)}$ energy in the B_s^0 rest frame)

