

Opportunities with B_c semileptonic decays

Fulvia De Fazio INFN Bari

LHCb workshop on semileptonic exclusive b \rightarrow c decays

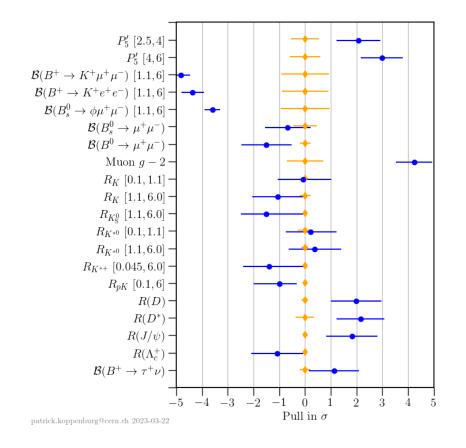
Frascati April 2023

based on works in collaboration with P. Colangelo, F. Loparco , N. Losacco, M. Novoa-Brunet

Outline

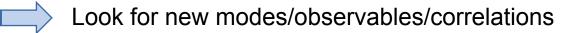
- Semileptonic b \rightarrow c transitions and B_c decays: motivations
- Spin symmetry + NRQCD : relations among FF in the SM and BSM
- Application to $B_c \rightarrow J/\psi$ and $B_c \rightarrow \eta_c$ form factors
- Application to B_c to P-wave charmonia and insights on X(3872)
- Other semileptonic B_c decays: $c \rightarrow s$, d transitions
- Summary

Motivations



\blacktriangleright b \rightarrow c transitions

- Precisely measure $|V_{cb}|$: insights on the tension from inclusive/exclusive determinations
- Anomalies shown up in modes induced by b \rightarrow c $\,\ell\,\nu_\ell$ transition



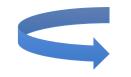
- > other quark-level transitions (e.g. $c \rightarrow s,d$)
- do anomalies show up?

Look for new modes/observables/correlations

- discovered at Tevatron in 1998
- m_{Bc}=6.274.47 +/- 0.27 +/- 0.17 GeV
- τ_{Bc} =0.510 +/- 0.009 ps
- decays weakly
- possible modes: annihilation, b transitions, c transitions (dominant)

Motivations:

- 1. explore BSM effects
- 2. $B_c \rightarrow$ charmonium: probe the structure of the charmonia produced in the decay



control of theoretical uncertainties in phenomenological analyses requires reliable determination of the hadronic form factors

possibility to exploit NRQCD methods + HQ spin symmetry

Explore BSM effects: SMEFT \rightarrow systematic extension of the SM

- NP exists at a high scale $\Lambda >> M_W$
- NP gauge group $G \supset SU(3)C \times SU(2)L \times U(1)_{Y}$
- SM gauge fields contained
- SM an effective theory at the scale M_W

Weinberg operator: v oscillations

Buchmuller et al, NPB 268 (1986) 621

Grzadkowski et al., JHEP 10 (2010) 085

$$\mathcal{L}_{SM} = \mathcal{L}_{SM}^{(4)} + \frac{1}{\Lambda} C_{\nu\nu}^{(5)} Q_{\nu\nu}^{(5)} + \frac{1}{\Lambda^2} \sum_k C_k^{(6)} Q_k^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

t

 $\mathcal{L}^{kin} + \mathcal{L}^{gauge} + \mathcal{L}^{Higgs} + \mathcal{L}^{Yukawa}$

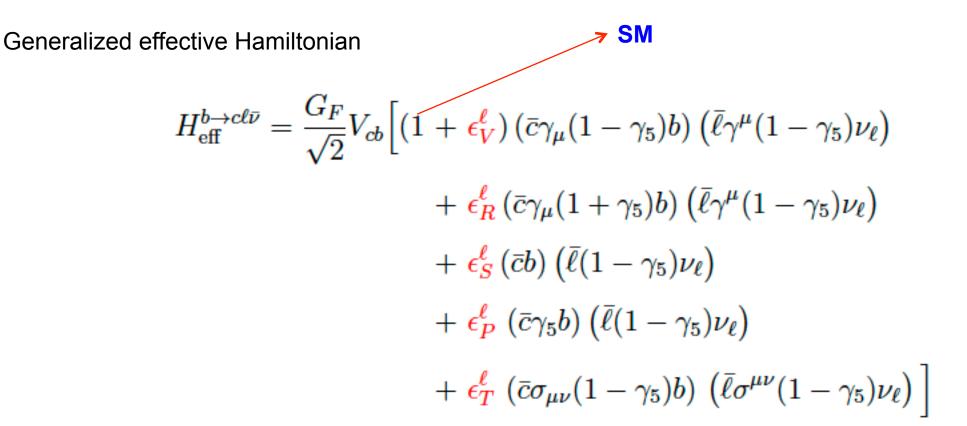
accidental symmetries

• violates accidental symmetries

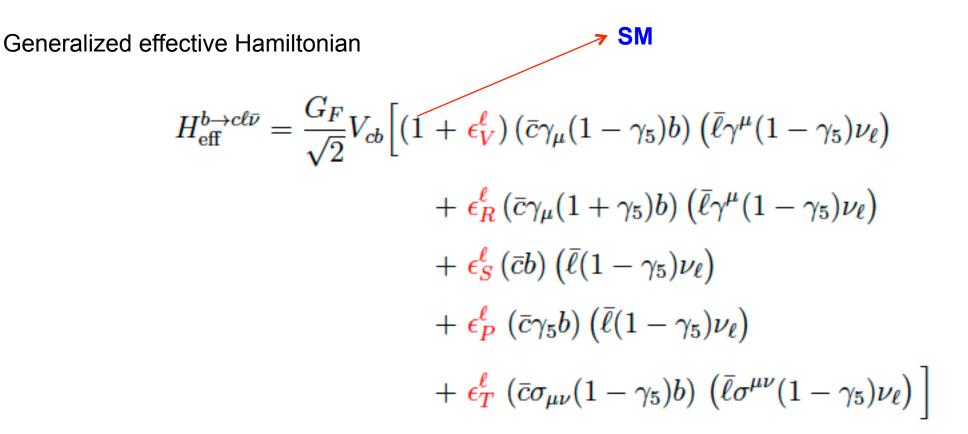
NP

- source of (SM) CP violation
- fermion mass terms

5



complex lepton flavour dependent couplings



larger set of form factors required wrt the SM case

complex lepton flavour dependent couplings > $B_c \rightarrow \eta_c$, J/ ψ 1S-wave charmonia J^{PC}=(0⁻⁻,1⁻⁻)

Motivations:

1. explore BSM effects

Motivations:

1. explore BSM effects

2. $B_c \rightarrow$ charmonium: probe the structure of the charmonia produced in the decay

 \rightarrow question: can X(3872) be identified with $\chi_{c1}(2P)$?

A few details on X(3872)

X(3872)

- discovered by Belle in 2003, confirmed by CDF, D0, BaBar,...
- in 2015 LHCb: $J^{P}=1^{++}$ candidate for identification with $\chi_{c1}(2P)$

-

- other possible interpretations tetraquark
 - D D^{*} molecule (proximity to the threshold)
- isospin violation disfavours the charmonium interpretation (but phase space suppression is at work)
- the preference of $\psi(2S) \gamma$ wrt J/ $\psi \gamma$ favours the interpretation as $\chi_{c1}(2P)$

look for further information:

does X(3872) fulfill the expectations for the production of $\chi_{c1}(2P)$ in semileptonic B_c decays?

Semileptonic B_c decays to charmonium

$$B_c \to J/\psi$$
:

Semileptonic B_c decays to charmonium

HQ spin symmetry in B_c decays

HQ limit: decoupling of the HQ

- Heavy-light mesons \rightarrow HQ spin & flavour symmetry
- Heavy-heavy mesons \rightarrow HQ spin symmetry

relations among the FF in selected kinematical ranges

Well known example:

FF of weak matrix elements between heavy-light mesons are all described by the lsgur-Wise function

Less known case:

٠

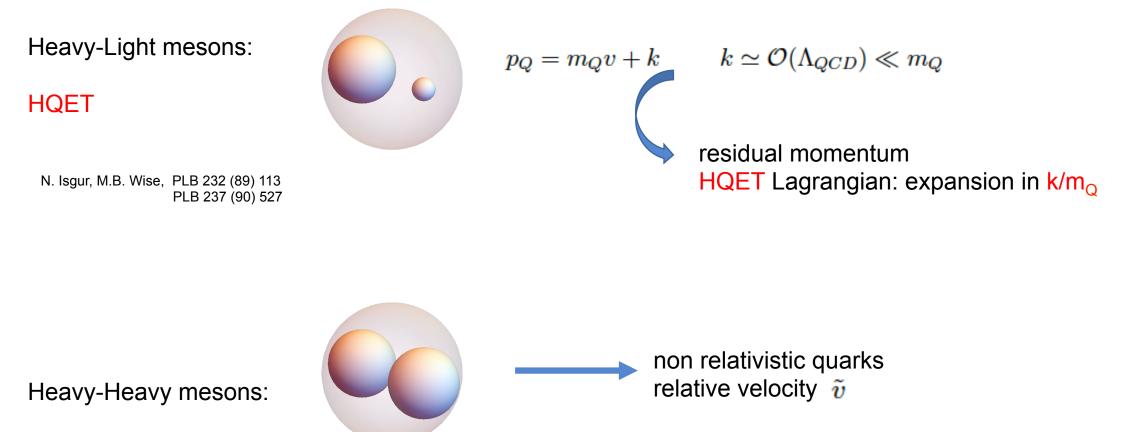
Heavy-heavy meson decays

IR divergent for 2 HQs with the same v

Infrared divergences regulated in the HQ limit by the kinetic energy operator O_{π} ٠ O_{π} breaks flavour symmetry \rightarrow only spin symmetry

Thacker and Lepage, PRD43 (1991) 196

Systems with heavy quarks: effective theories at work



NRQCD

W.E. Caswell, G.P. Lepage, PLB 167 (86) 437 G.T. Bodwin, E. Braaten, G.P. Lepage, PRD51 (95) 1125 NRQCD Lagrangian: expansion in $1/m_Q$ terms further organized: expansion in powers of \tilde{v}

different power counting

• expansion parameters for a system with 2 Heavy Quarks: 1. relative HQ 3-velocity (hadron rest-frame) (NRQCD)

2. inverse HQ mass $1/m_Q$ (HQET)

• HQ field:

$$Q(x) = e^{-im_Q v \cdot x} \psi(x) = e^{-im_Q v \cdot x} \left(\psi_+(x) + \psi_-(x) \right) \qquad \qquad \psi_\pm(x) = P_\pm \psi(x) = \frac{1 \pm \psi}{2} \psi(x)$$

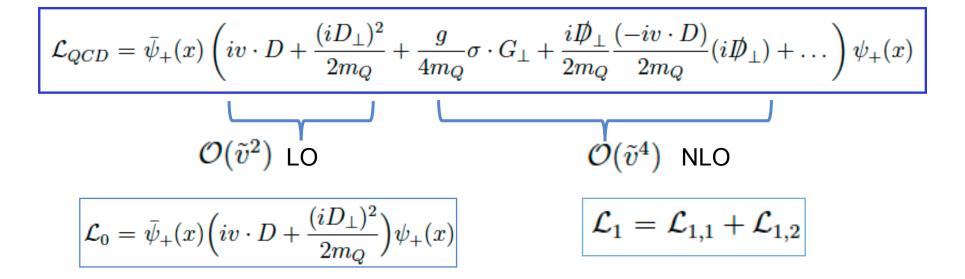
$$Q(x) = e^{-i m_Q v \cdot x} \left(1 + \frac{i \not{D}_\perp}{2m_Q} + \frac{(-iv \cdot D)}{2m_Q} \frac{i \not{D}_\perp}{2m_Q} + \dots \right) \psi_+(x) \qquad D_{\perp \mu} = D_\mu - (v \cdot D) v_\mu$$

$$\mathcal{L}_{QCD} = \bar{\psi}_{+}(x) \left(iv \cdot D + \frac{(iD_{\perp})^2}{2m_Q} + \frac{g}{4m_Q} \sigma \cdot G_{\perp} + \frac{i\not{D}_{\perp}}{2m_Q} \frac{(-iv \cdot D)}{2m_Q} (i\not{D}_{\perp}) + \dots \right) \psi_{+}(x)$$

Systems with heavy quarks: effective theories at work

power counting in NRQCD

$$\begin{split} \psi_{+} &\sim \tilde{v}^{3/2} \\ D_{\perp} &\sim \tilde{v} \\ E_{i} &= G_{0i} \sim \tilde{v}^{3} \\ B_{i} &= \frac{1}{2} \epsilon_{ijk} G^{jk} \sim \tilde{v}^{4} \end{split}$$



$$\langle C|\bar{Q}'\Gamma Q|B_c\rangle$$
 $C = \eta_c, J/\psi$ $C = \chi_{c0}, \chi_{c1}, \chi_{c2}, h_c$

I. expand the current:

$$\bar{Q}'(x)\Gamma Q(x) = J_0 + \left(\frac{J_{1,0}}{2m_Q} + \frac{J_{0,1}}{2m_{Q'}}\right) + \left(-\frac{J_{2,0}}{4m_Q^2} - \frac{J_{0,2}}{4m_{Q'}^2} + \frac{J_{1,1}}{4m_Q m_{Q'}}\right)$$

$$J_{0} = \bar{\psi}_{+}^{\prime} \Gamma \psi_{+}$$

$$J_{1,0} = \bar{\psi}_{+}^{\prime} \Gamma i \overrightarrow{D}_{\perp} \psi_{+}$$

$$J_{0,1} = \bar{\psi}_{+}^{\prime} \left(-i \overleftarrow{D}_{\perp}^{\prime} \right) \Gamma \psi_{+}$$

$$J_{2,0} = \bar{\psi}_{+}^{\prime} \Gamma \left(iv \cdot \overrightarrow{D} \right) i \overrightarrow{D}_{\perp} \psi_{+}$$

$$J_{0,2} = \bar{\psi}_{+}^{\prime} i \overleftarrow{D}_{\perp}^{\prime} \left(iv^{\prime} \cdot \overleftarrow{D} \right) \Gamma \psi_{+}$$

$$J_{1,1} = \bar{\psi}_{+}^{\prime} \left(-i \overleftarrow{D}_{\perp}^{\prime} \right) \Gamma \left(i \overrightarrow{D}_{\perp} \right) \psi_{+}$$

II: exploit spin symmetry:

doublet of negative parity states:

$$(B_c, B_c^*) \longrightarrow \mathcal{M}(v) = P_+(v) \left[B_c^{*\mu} \gamma_\mu - B_c \gamma_5 \right] P_-(v)$$
$$(\eta_c, J/\psi) \longrightarrow \mathcal{M}'(v') = P_+(v') \left[\Psi^{*\mu} \gamma_\mu - \eta_c \gamma_5 \right] P_-(v')$$

4-plet of positive parity states
$$(\chi_{c0,1,2}, h_c)$$

$$\int \mathcal{M}^{\prime\mu}(v') = P_+(v') \left[\chi^{\mu\nu}_{c2} \gamma_{\nu} + \frac{1}{\sqrt{2}} \chi_{c1,\gamma} \epsilon^{\mu\alpha\beta\gamma} v'_{\alpha} \gamma_{\beta} + \frac{1}{\sqrt{3}} \chi_{c0} (\gamma^{\mu} - v'^{\mu}) + h^{\mu}_{c} \gamma_{5} \right] P_-(v') \qquad v'_{\mu} \mathcal{M}^{\prime\mu} = 0$$

analogous for 2P charmonia

III. trace formalism:

$$\langle C|\bar{Q}'\Gamma D_{\mu_1}D_{\mu_2}\dots Q|B_c\rangle = -\mathrm{Tr}\Big[\mathcal{F}_{\mu\,\mu_1\mu_2\dots}\bar{\mathcal{M}}'^{\mu}\Gamma\mathcal{M}\Big]$$

universal functions: the same for all the members of the multiplet of final states

relations among the various modes

III. trace formalism: at LO in the HQ expansion all the matrix elements involve a single universal function

$$\langle M'(v')|J_0|M(v)\rangle = -\Xi(w)v_{\mu}\operatorname{Tr}\left[\overline{\mathcal{M}}'^{\mu}\Gamma\mathcal{M}\right]$$

III. trace formalism: At LO in the HQ expansion all the matrix elements involve a single universal function

$$\langle M'(v')|J_0|M(v)\rangle = -\Xi(w)v_{\mu}\operatorname{Tr}\left[\overline{\mathcal{M}}^{\prime\mu}\Gamma\mathcal{M}\right]$$

O(1/m_Q)

$$\langle M'(v') | \bar{\psi}'_{+} \Gamma i \overrightarrow{D}_{\alpha} \psi_{+} | M(v) \rangle = -\operatorname{Tr} \left[\Sigma^{(b)}_{\mu\alpha} \overline{\mathcal{M}}'^{\mu} \Gamma \mathcal{M} \right]$$
$$\langle M'(v') | \bar{\psi}'_{+} (-i \overleftarrow{D}_{\alpha}) \Gamma \psi_{+} | M(v) \rangle = -\operatorname{Tr} \left[\Sigma^{(c)}_{\mu\alpha} \overline{\mathcal{M}}'^{\mu} \Gamma \mathcal{M} \right]$$

$$\Sigma_{\mu\alpha}^{(Q)} = \Sigma_1^{(Q)} g_{\mu\alpha} + \Sigma_2^{(Q)} v_{\mu} v_{\alpha} + \Sigma_3^{(Q)} v_{\mu} v_{\alpha}' + \Sigma_4^{(Q)} v_{\mu} \gamma_{\alpha} + \Sigma_5^{(Q)} \gamma_{\mu} v_{\alpha} + \Sigma_6^{(Q)} \gamma_{\mu} v_{\alpha}' + \Sigma_7^{(Q)} i \sigma_{\mu\alpha} v_{\alpha}' + \Sigma_7^{(Q)} i \sigma_{\mu\alpha} v_{\alpha}' + \Sigma_7^{(Q)} v_{\alpha} v_{\alpha}' + \Sigma_7^{(Q)} v_{\alpha} v_{\alpha}' + \Sigma_7^{(Q)} v_{\alpha}' v_{\alpha}' v_{\alpha}' + \Sigma_7^{(Q)} v_{\alpha}' v_{\alpha}' v_{\alpha}' v_{\alpha}' + \Sigma_7^{(Q)} v_{\alpha}' v_{\alpha}' v_{\alpha}' v_{\alpha}' v_{\alpha}' v_{\alpha}' + \Sigma_7^{(Q)} v_{\alpha}' v_{\alpha}$$

constraints:

$$\begin{split} \Sigma_i^{(b)}(w) &- \Sigma_i^{(c)}(w) = 0 \qquad i = 1, 4, 5, 6, 7\\ \Sigma_2^{(b)}(w) &- \Sigma_2^{(c)}(w) = \tilde{\Lambda} \Xi ,\\ \Sigma_3^{(b)}(w) &- \Sigma_3^{(c)}(w) = -\tilde{\Lambda}' \Xi(w) . \end{split}$$

III. trace formalism: At LO in the HQ expansion all the matrix elements involve a single universal function

$$\langle M'(v')|J_0|M(v)\rangle = -\Xi(w)v_{\mu}\operatorname{Tr}\left[\overline{\mathcal{M}}^{\prime\mu}\Gamma\mathcal{M}\right]$$

 $O(1/m_Q)$

$$\langle M'(v') | \bar{\psi}'_{+} \Gamma i \overrightarrow{D}_{\alpha} \psi_{+} | M(v) \rangle = -\mathrm{Tr} \left[\Sigma^{(b)}_{\mu\alpha} \overline{\mathcal{M}}'^{\mu} \Gamma \mathcal{M} \right]$$
$$\langle M'(v') | \bar{\psi}'_{+} (-i \overleftarrow{D}_{\alpha}) \Gamma \psi_{+} | M(v) \rangle = -\mathrm{Tr} \left[\Sigma^{(c)}_{\mu\alpha} \overline{\mathcal{M}}'^{\mu} \Gamma \mathcal{M} \right]$$

 $O(1/m_Q)^2$

$$\langle M'(v') | \bar{\psi}'_{+} \Gamma \, i \, \overrightarrow{D}_{\alpha} \, i \, \overrightarrow{D}_{\beta} \, \psi_{+} | M(v) \rangle = - \operatorname{Tr} \left[\Omega^{(b)}_{\mu\alpha\beta} \, \overline{\mathcal{M}}'^{\mu} \, \Gamma \, \mathcal{M} \right]$$

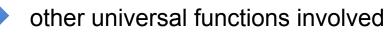
$$\langle M'(v') | \bar{\psi}'_{+} \, i \, \overleftarrow{D}_{\alpha} \, i \, \overleftarrow{D}_{\beta} \, \Gamma \, \psi_{+} | M(v) \rangle = - \operatorname{Tr} \left[\Omega^{(c)}_{\mu\alpha\beta} \, \overline{\mathcal{M}}'^{\mu} \, \Gamma \, \mathcal{M} \right]$$

constraints:

$$\Omega^{(b)}_{\mu\alpha\beta} - \Omega^{(c)}_{\mu\alpha\beta} = \left(\tilde{\Lambda} \, v_{\alpha} - \tilde{\Lambda}' \, v_{\alpha}'\right) \Sigma^{(b)}_{\mu\beta} + \left(\tilde{\Lambda} \, v_{\beta} - \tilde{\Lambda}' \, v_{\beta}'\right) \Sigma^{(c)}_{\mu\alpha}$$

other corrections from the expansion of the states (non-local corrections)

$$\begin{split} \langle M'(v')|i \int \mathrm{d}^4 x \,\mathrm{T}\left[J_0(0), \mathcal{L}_1(x)\right] |M(v)\rangle &= \\ -\frac{1}{4 \, m_b} \underbrace{\left(-\frac{i}{2}\right) \,\mathrm{Tr}\left[\Upsilon_{2\mu\alpha\beta}^{(b)} \,\overline{\mathcal{M}}'^{\mu} \,\Gamma \,P_+ \,\sigma^{\alpha\beta} \,\mathcal{M}\right]}_{G^{(b)}} - \frac{1}{2 \, m_b^2} \underbrace{\mathrm{Tr}\left[\Upsilon_{1\mu}^{(b)} \,\overline{\mathcal{M}}'^{\mu} \,\Gamma \,\mathcal{M}\right]}_{K^{(b)}}, \\ \langle M'(v')|i \int \mathrm{d}^4 x \,\mathrm{T}\left[J_0(0), \mathcal{L}_1'(x)\right] |M(v)\rangle &= \\ -\frac{1}{4 \, m_c} \underbrace{\left(-\frac{i}{2}\right) \,\mathrm{Tr}\left[\Upsilon_{2\mu\alpha\beta}^{(c)} \,\overline{\mathcal{M}}'^{\mu} \,\sigma^{\alpha\beta} \,P_+' \,\Gamma \,\mathcal{M}\right]}_{G^{(c)}} - \frac{1}{2 \, m_c^2} \underbrace{\mathrm{Tr}\left[\Upsilon_{1\mu}^{(c)} \,\overline{\mathcal{M}}'^{\mu} \,\Gamma \,\mathcal{M}\right]}_{K^{(c)}}, \end{split}$$

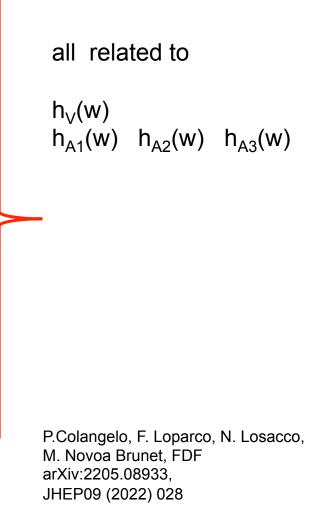


• relations among the form factors of the same decay mode

$$B_{c} \rightarrow J/\psi \qquad h_{T_{1}}(w) = \frac{1}{2} \Big((1+w)h_{A_{1}}(w) - (w-1)h_{V}(w) \Big) h_{T_{2}}(w) = \frac{1+w}{2(m_{b}+3m_{c})} \Big((m_{b}-3m_{c})h_{A_{1}}(w) + 2m_{c}(h_{A_{2}}(w) + h_{A_{3}}(w)) - (m_{b}-m_{c})h_{V}(w) \Big) h_{T_{3}}(w) = h_{A_{3}}(w) - h_{V}(w) h_{P}(w) = \frac{1}{m_{b}+3m_{c}} \Big((1+w) (m_{b}h_{A_{1}}(w) + 2m_{c}h_{V}(w)) + (-m_{b}+(w-2)m_{c})h_{A_{2}}(w) - (w m_{b}+(2w-1)m_{c})h_{A_{3}}(w) \Big)$$

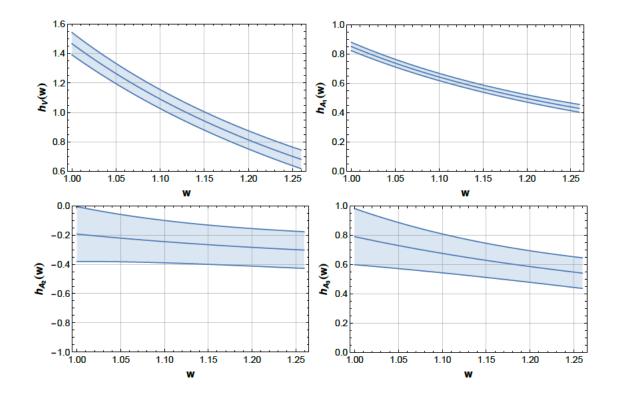
 $B_c \to \eta_c$

$$h_{-}(w) = \frac{m_{b} - m_{c}}{2(m_{b} + 3m_{c})} (1 + w) \Big(3h_{A_{1}}(w) - h_{A_{2}}(w) - h_{A_{3}}(w) - 2h_{V}(w) \Big)$$
$$h_{T}(w) - h_{+}(w) = -\frac{m_{b} + m_{c}}{2(m_{b} + 3m_{c})} (1 + w) \Big(3h_{A_{1}}(w) - h_{A_{2}}(w) - h_{A_{3}}(w) - 2h_{V}(w) \Big)$$
$$h_{T}(w) - h_{S}(w) = -\frac{m_{b} + m_{c}}{(m_{b} + 3m_{c})} \Big(3h_{A_{1}}(w) - h_{A_{2}}(w) - h_{A_{3}}(w) - 2h_{V}(w) \Big).$$

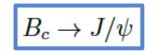


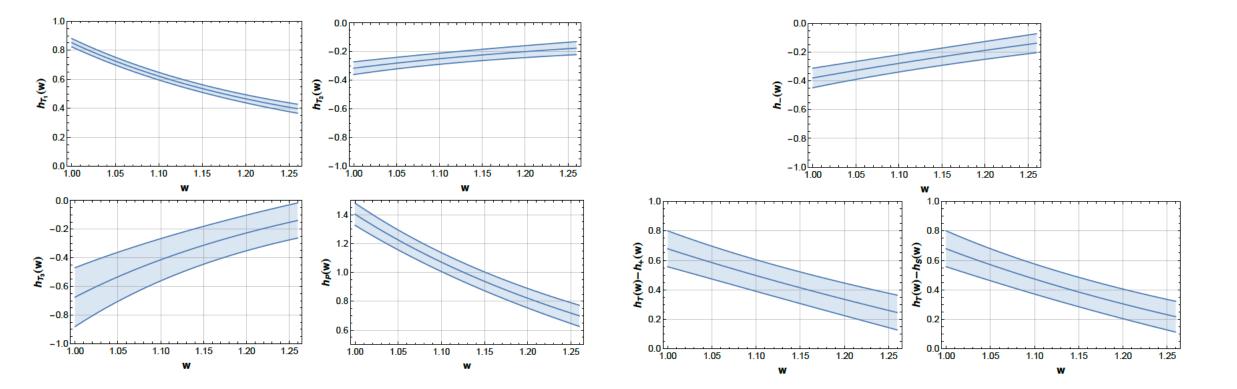
available lattice results

HPQCD Collab. PRD 102 (2020) 094518 arXiv:2007.06957



results





P.Colangelo, F. Loparco, N. Losacco, M. Novoa Brunet, FDF arXiv:2205.08933, JHEP09 (2022) 028

 B_{c}

• relations among the form factors of the same decay mode

• $B_c \to \chi_{c0}$

P.Colangelo, F. Loparco, N. Losacco, M. Novoa Brunet, FDF PRD 106 (2022) 094005 arXiv:2208.13398

$$g_{T}(w) = -\frac{1}{w+1} [2g_{-}(w) + g_{P}(w)]$$
• $B_{c} \to \chi_{c1}$

$$g_{T_{2}}(w) = -\frac{1}{2} [g_{V_{1}}(w) - (1+w)g_{A}(w)]$$

$$g_{T_{3}}(w) = -\frac{1}{2(w-1)} [g_{V_{1}}(w) + 4g_{V_{2}}(w)] + \frac{1}{2}g_{A}(w) + \frac{1}{w-1} [g_{S}(w) + g_{T_{1}}(w)]$$
• $B_{c} \to \chi_{c2}$

$$k_{T_{1}}(w) = -wk_{V}(w) + k_{A_{2}}(w) + wk_{A_{3}}(w) + k_{P}(w)$$

$$k_{T_{2}}(w) = k_{V}(w) - k_{A_{1}}(w) - k_{A_{2}}(w) - wk_{A_{3}}(w) - k_{P}(w)$$

$$k_{T_{3}}(w) = -k_{V}(w) + k_{A_{3}}(w)$$
• $B_{c} \to h_{c}$

$$f_{T_{2}}(w) = \frac{1}{2} [f_{V_{1}}(w) + (1+w)f_{A}(w)]$$

$$f_{T_{3}}(w) = \frac{1}{2(w-1)} [f_{V_{1}}(w) + 4f_{V_{2}}(w)] + \frac{1}{2}f_{A}(w) - \frac{1}{w-1} [f_{S}(w) - f_{T_{1}}(w)]$$

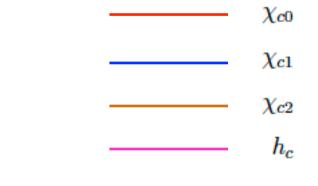
$Bc \rightarrow (\chi_{c0}, \chi_{c1}, \chi_{c2}, h_c)$ Form Factors in the effective theory: relations at O(1/m_Q)

• relations among the form factors of pairs of decay modes

•
$$\begin{aligned} B_c &\to \chi_{c0} \text{ and } B_c \to \chi_{c1} \\ &(w+1)g_+(w) - (w-1)g_-(w) + g_P(w) = \\ &\frac{w+1}{\sqrt{6}} \{ 2g_{V_1}(w) + (w+1)g_{V_2}(w) - (w-1) [g_{V_3}(w) + g_A(w)] - g_S(w) + 2g_{T_1}(w) \} \\ \bullet & B_c \to h_c \text{ and } B_c \to \chi_{c1} \\ &f_{V_1}(w) + (w-1)f_A(w) - 2f_{T_1}(w) = \\ &\sqrt{2} \{ g_{V_1}(w) + (w+1)g_{V_2}(w) - (w-1)g_{V_3}(w) - g_S(w) \} \\ &3f_{V_1}(w) + 2(w+1)f_{V_2}(w) - (w-1) [2f_{V_3}(w) - f_A(w)] - 2[f_S(w) + f_{T_1}(w)] = \\ &\sqrt{2} \{ g_{V_1}(w) - (w-1)g_A(w) + 2g_{T_1}(w) \} \end{aligned}$$

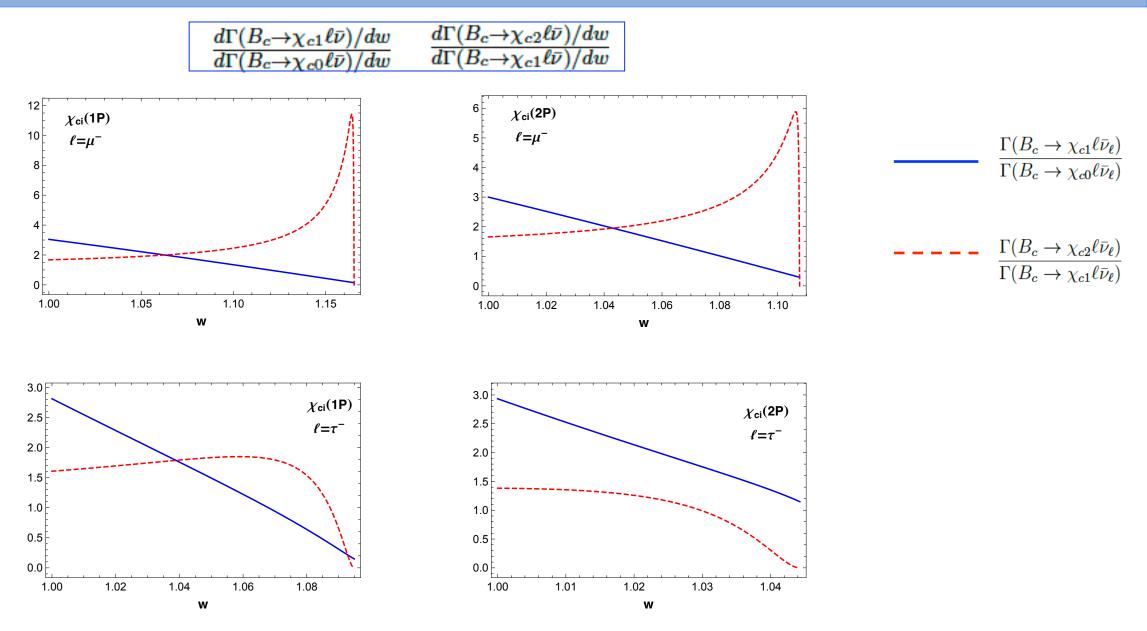
$Bc \rightarrow (\chi_{c0}, \chi_{c1}, \chi_{c2}, h_c)$ Form Factors in the effective theory: relations at LO

 $egin{aligned} g_+(w) &= 0 \ g_S(w) &= g_{T_1}(w) = 0 \ k_{A_2}(w) &= k_{T_3}(w) = 0 \ f_{V_1}(w) &= f_{V_3}(w) = f_A(w) = f_{T_1}(w) = f_{T_2}(w) = 0 \end{aligned}$



$$\begin{split} \Xi(w) &= \frac{\sqrt{3}}{(w+1)}g_{-}(w) = -\frac{\sqrt{3}}{(w+1)}g_{T}(w) = \frac{\sqrt{3}}{(w^{2}-1)}g_{P}(w) \\ &= \frac{\sqrt{2}}{(w^{2}-1)}g_{V_{1}}(w) = -\frac{2\sqrt{2}}{(w-1)}g_{V_{2}}(w) = \frac{2\sqrt{2}}{(w+1)}g_{V_{3}}(w) = \frac{\sqrt{2}}{(w+1)}g_{A}(w) = \frac{\sqrt{2}}{(w+1)}g_{T_{2}}(w) \\ &= -k_{V}(w) = \frac{1}{w+1}k_{A_{1}}(w) = -k_{A_{3}}(w) = -k_{P}(w) = -k_{T_{1}}(w) = -k_{T_{2}}(w) \\ &= -f_{V_{1}}(w) = -f_{V_{2}}(w) = -\frac{1}{w+1}f_{S}(w) = f_{T_{3}}(w) \end{split}$$

 $Bc \rightarrow (\chi_{c0}, \chi_{c1}, \chi_{c2}, h_c)$ exploiting FF relations at LO

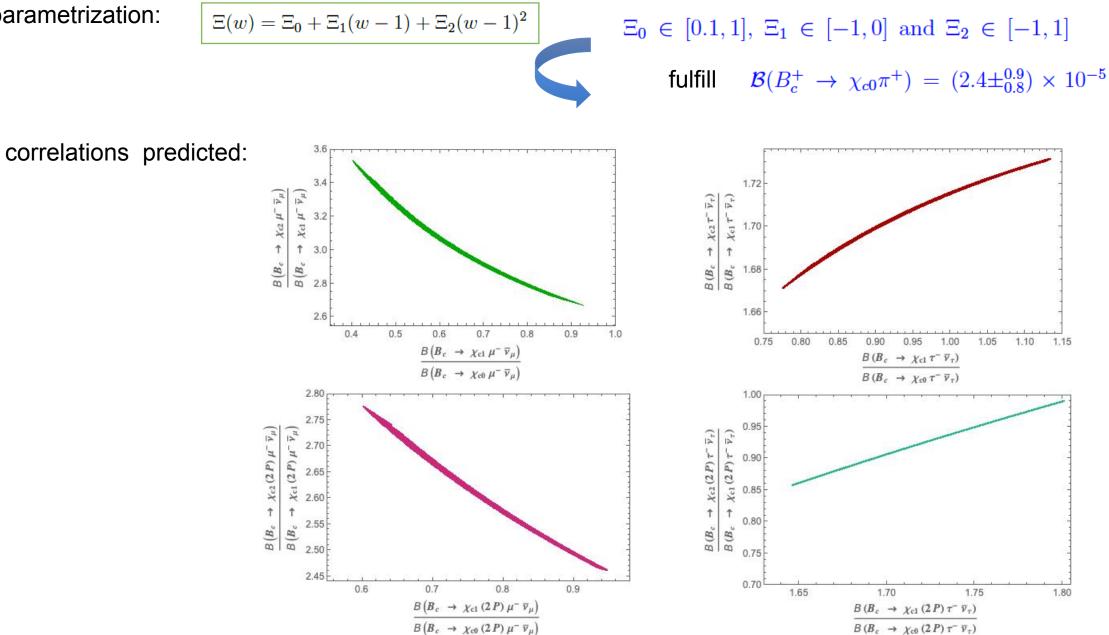


• constraint at LO both in SM and for generic NP

$$2\frac{d\Gamma}{dw}(B_c \to \chi_{c0}\ell\bar{\nu}_\ell) + \frac{d\Gamma}{dw}(B_c \to \chi_{c1}\ell\bar{\nu}_\ell) - \frac{d\Gamma}{dw}(B_c \to \chi_{c2}\ell\bar{\nu}_\ell) = 0.$$

to be satisfied by the three members of the 4-plet

 $Bc \rightarrow (\chi_{c0}, \chi_{c1}, \chi_{c2}, h_c)$ exploiting FF relations at LO

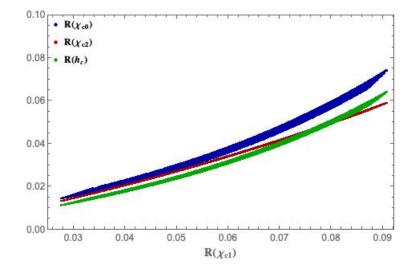


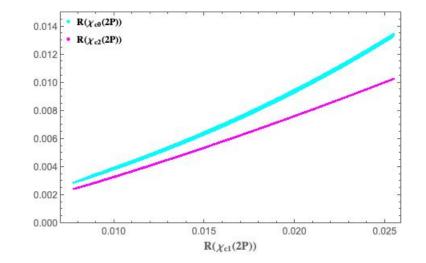
32

 $Bc \rightarrow (\chi_{c0}, \chi_{c1}, \chi_{c2}, h_c)$ exploiting FF relations at LO

tests of LFU:

$$R(C) = \frac{\Gamma(B_c \to C\tau\bar{\nu}_{\tau})}{\Gamma(B_c \to C\mu\bar{\nu}_{\mu})}$$





$Bc \rightarrow (\chi_{c0}, \chi_{c1}, \chi_{c2}, h_c)$ exploiting FF relations at NLO

At NLO the number of universal functions increase. However:

- they enter in different modes, model independent predictions
- can be used also in other processes
- model independent: tests of direct computations (should satisfy the effective theory predictions)
- Once reliable determinations for a few form factors are available (i.e. by lattice QCD) the others are predicted
- a reduced number of structures contributes close to w=1:

$$\begin{split} \lim_{w \to 1} \frac{1}{\tilde{\Gamma}} \frac{d\Gamma}{dw} (B_c \to \chi_{c0} \ell \bar{\nu}_{\ell}) &= 18 \, \hat{m}_{\ell}^2 (\epsilon_b + \epsilon_c)^2 \Big[\Sigma_{\chi_{c1},1}^{(b)}(1) \Big]^2 \\ \lim_{w \to 1} \frac{1}{\tilde{\Gamma}} \frac{d\Gamma}{dw} (B_c \to \chi_{c1} \ell \bar{\nu}_{\ell}) &= 12 \Big[2(1 - r_1)^2 + \hat{m}_{\ell}^2 \Big] \Big[\epsilon_b \Sigma_{\chi_{c1},1}^{(b)}(1) - \epsilon_c \Sigma_{\chi_{c1},1}^{(c)}(1) \Big]^2 \\ \lim_{w \to 1} \frac{1}{\tilde{\Gamma}} \frac{d\Gamma}{dw} (B_c \to h_c \ell \bar{\nu}_{\ell}) &= 6 \Big[2(1 - r_h)^2 + \hat{m}_{\ell}^2 \Big] \Big[(\epsilon_b - \epsilon_c) \Sigma_{\chi_{c1},1}^{(b)}(1) + 2\epsilon_c \Sigma_{\chi_{c1},1}^{(c)}(1) \Big]^2 \\ \epsilon_b &= \frac{1}{2m_b} \qquad \epsilon_c = \frac{1}{2m_c} \end{split}$$

if X(3872) is $\chi_{c1}(2P)$ these relations should be fulfilled (hard task...)

Semileptonic B_c decays: $c \rightarrow s,d$ transitions

 $\bm{B_c} \rightarrow \bm{B_{s,d}}$

$$\begin{split} \langle P(p') | \bar{q} \gamma_{\mu} Q | B_{c}(p) \rangle &= f_{+}^{B_{c} \to P}(q^{2}) \left(p_{\mu} + p'_{\mu} - \frac{m_{B_{c}}^{2} - m_{P}^{2}}{q^{2}} q_{\mu} \right) + f_{0}^{B_{c} \to P}(q^{2}) \frac{m_{B_{c}}^{2} - m_{P}^{2}}{q^{2}} q_{\mu} , \\ \langle P(p') | \bar{q} Q | B_{c}(p) \rangle &= f_{S}^{B_{c} \to P}(q^{2}) , \\ \langle P(p') | \bar{q} \sigma_{\mu\nu} Q | B_{c}(p) \rangle &= -i \frac{2 f_{T}^{B_{c} \to P}(q^{2})}{m_{B_{c}} + m_{P}} \left(p_{\mu} p'_{\nu} - p_{\nu} p'_{\mu} \right) , \\ \langle P(p') | \bar{q} \sigma_{\mu\nu} \gamma_{5} Q | B_{c}(p) \rangle &= -\frac{2 f_{T}^{B_{c} \to P}(q^{2})}{m_{B_{c}} + m_{P}} \epsilon_{\mu\nu\alpha\beta} p^{\alpha} p'^{\beta} \end{split}$$

$$\mathbf{B}_{c} \rightarrow \mathbf{B}_{s,d}^{*} \qquad \langle V(p',\epsilon) | \bar{q}\gamma_{\mu}Q | B_{c}(p) \rangle = -\frac{2V^{B_{c} \rightarrow V}(q^{2})}{m_{B_{c}} + m_{V}} i\epsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu}p^{\alpha}p'^{\beta}, \\ \langle V(p',\epsilon) | \bar{q}\gamma_{\mu}\gamma_{5}Q | B_{c}(p) \rangle = (m_{B_{c}} + m_{V}) \left(\epsilon_{\mu}^{*} - \frac{(\epsilon^{*} \cdot q)}{q^{2}}q_{\mu}\right) A_{1}^{B_{c} \rightarrow V}(q^{2}) - \frac{(\epsilon^{*} \cdot q)}{m_{B_{c}} + m_{V}} \left((p + p')_{\mu} - \frac{m_{B_{c}}^{2} - m_{V}^{2}}{q^{2}}q_{\mu}\right) A_{2}^{B_{c} \rightarrow V}(q^{2}) \\ + (\epsilon^{*} \cdot q) \frac{2m_{V}}{q^{2}}q_{\mu}A_{0}^{B_{c} \rightarrow V}(q^{2}), \\ \langle V(p',\epsilon) | \bar{q}\gamma_{5}Q | B_{c}(p) \rangle = -\frac{2m_{V}}{m_{Q} + m_{q}} (\epsilon^{*} \cdot q) A_{0}^{B_{c} \rightarrow V}(q^{2}), \\ \langle V(p',\epsilon) | \bar{q}\sigma_{\mu\nu}Q | B_{c}(p) \rangle = T_{0}^{B_{c} \rightarrow V}(q^{2}) \frac{\epsilon^{*} \cdot q}{(m_{B_{c}} + m_{V})^{2}} \epsilon_{\mu\nu\alpha\beta}p^{\alpha}p'^{\beta} + T_{1}^{B_{c} \rightarrow V}(q^{2})\epsilon_{\mu\nu\alpha\beta}p^{\alpha}\epsilon^{*\beta} + T_{2}^{B_{c} \rightarrow V}(q^{2})\epsilon_{\mu\nu\alpha\beta}p'^{\alpha}\epsilon^{*\beta}, \\ \langle V(p',\epsilon) | \bar{q}\sigma_{\mu\nu}\gamma_{5}Q | B_{c}(p) \rangle = i T_{0}^{B_{c} \rightarrow V}(q^{2}) \frac{\epsilon^{*} \cdot q}{(m_{B_{c}} + m_{V})^{2}} (p_{\mu}p'_{\nu} - p_{\nu}p'_{\mu}) \\ + i T_{1}^{B_{c} \rightarrow V}(q^{2})(p_{\mu}\epsilon_{\nu}^{*} - \epsilon_{\mu}^{*}p_{\nu}) + i T_{2}^{B_{c} \rightarrow V}(q^{2})(p'_{\mu}\epsilon_{\nu}^{*} - \epsilon_{\mu}^{*}p'_{\nu})$$

HQ spin symmetry in B_c decays

$$\langle P(v,k)|\bar{q}\gamma_{\mu}Q|B_{c}(v)\rangle = 2\sqrt{m_{B_{c}}m_{P}}\Big(\Omega_{1}(y) \ v_{\mu} + a_{0}\Omega_{2}(y) \ k_{\mu}\Big),$$

$$\langle P(v,k)|\bar{q}Q|B_{c}(v)\rangle = 2\sqrt{m_{B_{c}}m_{P}}\Big(\Omega_{1}(y) + a_{0}\Omega_{2}(y) \ v \cdot k\Big),$$

$$\langle P(v,k)|\bar{q}\sigma_{\mu\nu}Q|B_{c}(v)\rangle = -2i\sqrt{m_{B_{c}}m_{P}} \ a_{0}\Omega_{2}(y)\Big(v_{\mu}k_{\nu} - v_{\nu}k_{\mu}\Big)$$

$$\langle V(v,k,\epsilon) | \bar{q}\gamma_{\mu}Q | B_{c}(v) \rangle = 2i\sqrt{m_{B_{c}}m_{V}} a_{0}\Omega_{2}(y) \epsilon_{\mu\nu\alpha\beta}\epsilon^{*\nu} k^{\alpha}v^{\beta},$$

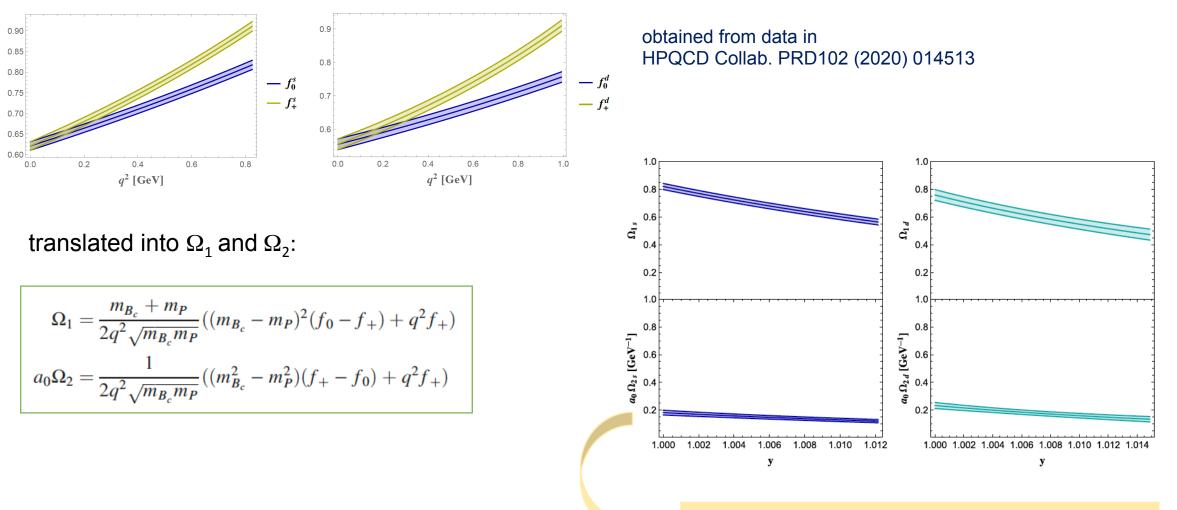
$$\langle V(v,k,\epsilon) | \bar{q}\gamma_{\mu}\gamma_{5}b | B_{c}(v) \rangle = 2\sqrt{m_{B_{c}}m_{V}} \Big(\epsilon_{\mu}^{*} \left(\Omega_{1}(y) + v \cdot k a_{0}\Omega_{2}(y)\right) - \left(v_{\mu} - \frac{k_{\mu}}{m_{V}}\right)\epsilon^{*} \cdot k a_{0}\Omega_{2}(y) \Big),$$

$$\langle V(v,k,\epsilon) | \bar{q}\sigma_{\mu\nu}Q | B_{c}(v) \rangle = -2\sqrt{m_{B_{c}}m_{V}} \Big(\epsilon_{\mu\nu\alpha\beta}\epsilon^{*\alpha}v^{\beta}\Omega_{1}(y) + \epsilon_{\mu\nu\alpha\beta}\epsilon^{*\alpha}k^{\beta}a_{0}\Omega_{2}(y) \Big),$$

$$\langle V(v,k,\epsilon) | \bar{q}\sigma_{\mu\nu}\gamma_{5}Q | B_{c}(v) \rangle = 2i\sqrt{m_{B_{c}}m_{V}} \Big(\epsilon_{\nu}^{*}(v_{\mu}\Omega_{1}(y) + k_{\mu}a_{0}\Omega_{2}(y)) - \epsilon_{\mu}^{*}(v_{\nu}\Omega_{1}(y) + k_{\nu}a_{0}\Omega_{2}(y)) \Big)$$

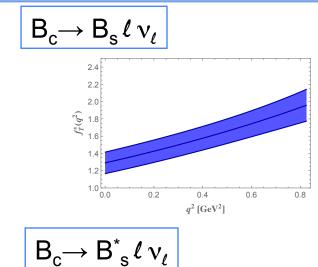
all expressed in terms of Ω_1 and Ω_2

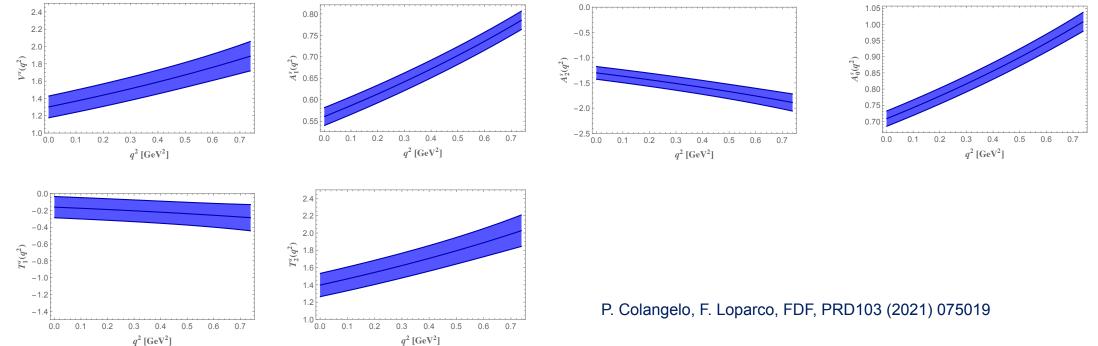
lattice results for f_+ and f_0



all other FFs derived from these functions

HQ spin symmetry in B_c decays

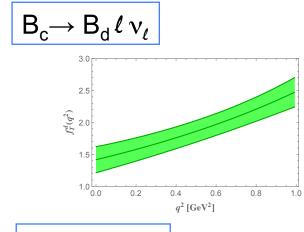


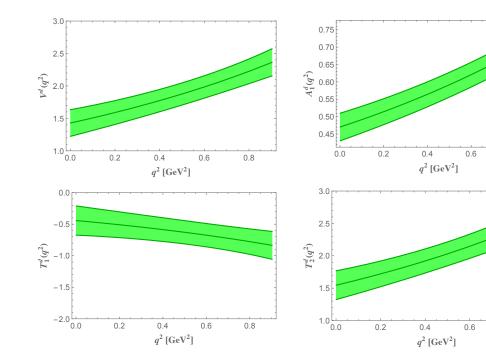


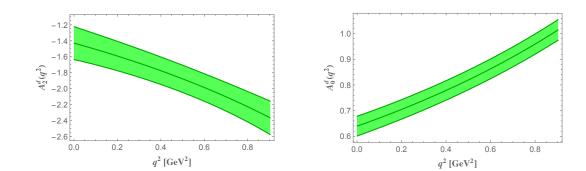
HQ spin symmetry in B_c decays

0.8

0.8







P. Colangelo, F. Loparco, FDF, PRD103 (2021) 075019

Results

$$\mathcal{B}(B_c^+ \to B_s \,\mu^+ \nu_\mu) = 0.0125 \,(4) \,\left(\frac{|V_{cs}|}{0.987}\right)^2$$
$$\mathcal{B}(B_c^+ \to B_s \,e^+ \nu_e) = 0.0131 \,(4) \,\left(\frac{|V_{cs}|}{0.987}\right)^2$$

SM branching fractions

$$\mathcal{B}(B_c^+ \to B_d \,\mu^+ \nu_\mu) = 8.3\,(5) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d \,e^+ \nu_e) = 8.7\,(5) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2 \\ \mathcal{B}(B_c^+ \to B_d^* \,e^+ \nu_e) = 21\,(1) \times 10^{-4} \,\left(\frac{|V_{cd}|}{0.221}\right)^2$$

$$B_{c} \rightarrow B^{(*)}_{d} \ell \nu_{\ell}$$

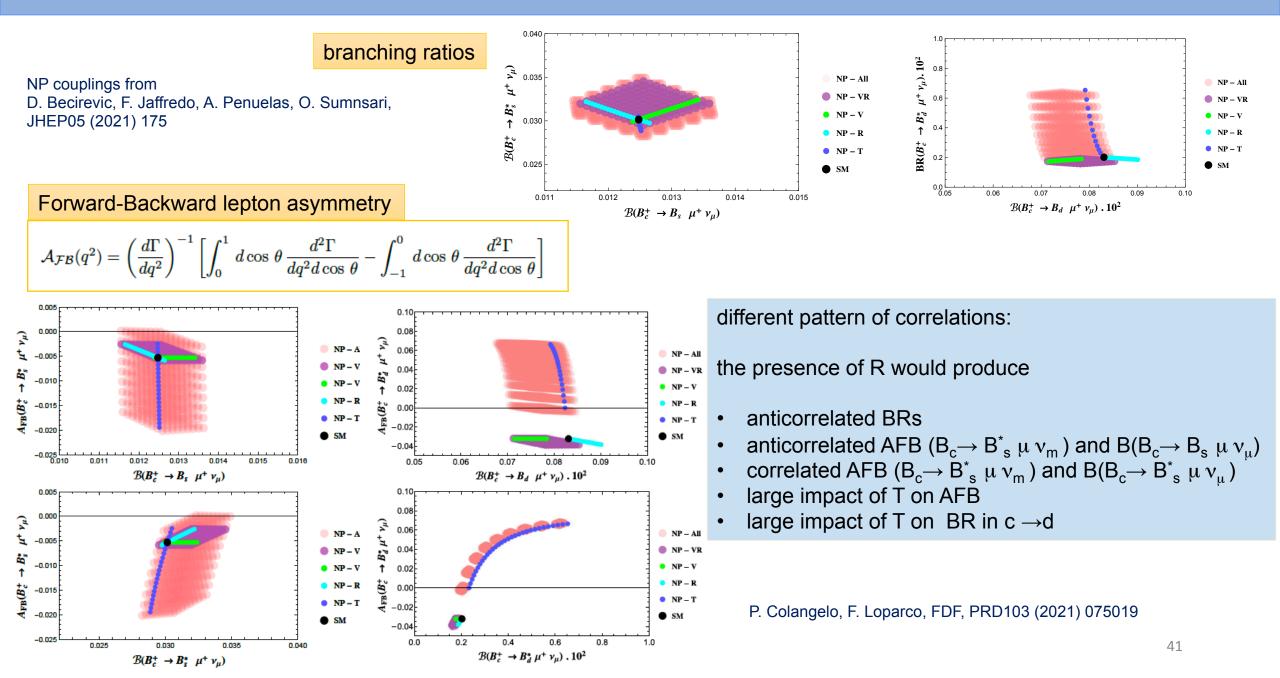
 $B_c \rightarrow B^{(*)}_{s} \ell \nu_{\ell}$

small uncertainty: role of the HQSS relations

P. Colangelo, F. Loparco, FDF, PRD103 (2021) 075019

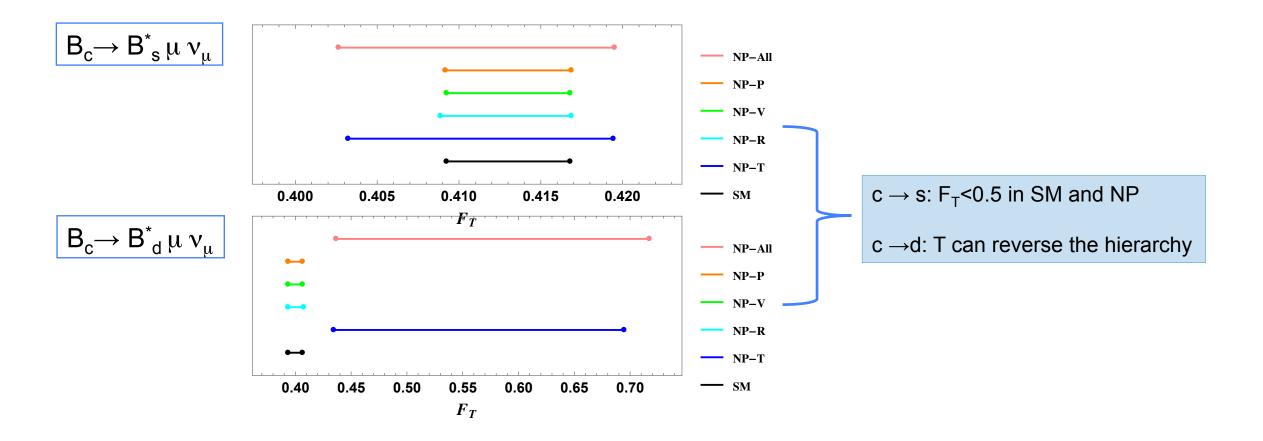
 $\mathcal{B}(B_c^+ \to B_s^* \,\mu^+ \nu_\mu) = 0.030 \,(1) \,\left(\frac{|V_{cs}|}{0.987}\right)^2$ $\mathcal{B}(B_c^+ \to B_s^* \,e^+ \nu_e) = 0.032 \,(1) \,\left(\frac{|V_{cs}|}{0.987}\right)^2$

Impact of NP: correlations



 $B_c \rightarrow B_{s,d}^* \mu \nu_{\mu}$

fraction of transversely polarized $B_{s,d}^*$



P. Colangelo, F. Loparco, FDF, PRD103 (2021) 075019

Conclusions

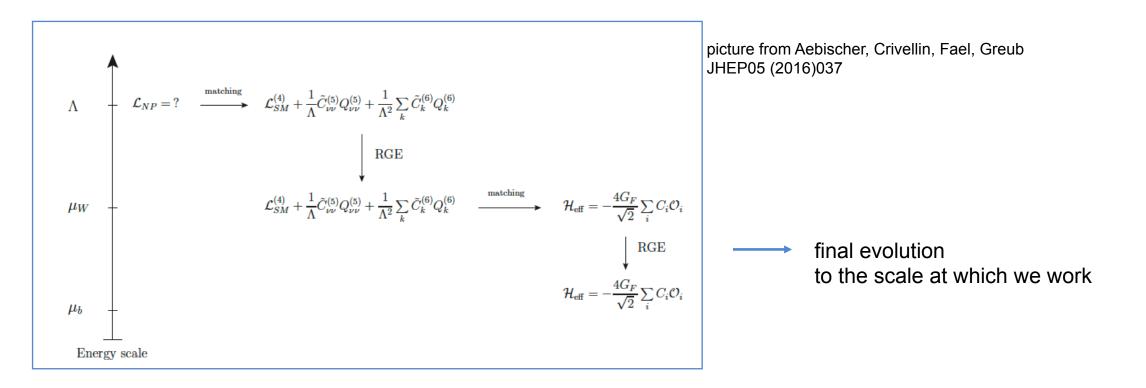
$B_{\rm c}$ decays represent an interesting testing ground for

- determination of V_{cb}
- flavour anomalies
- probing the structure of the hadrons in the final state

predictions based on NRQCD + HQE

- relations among FFs
- relations to be fulfilled by modes with final hadrons connected by HQSS
- tests of explicit calculations

Explore BSM effects: Systematic extension of the SM



- coefficients in the low energy \mathcal{H}_{eff} related to those at high scale
- relations among coefficients entering in different processes

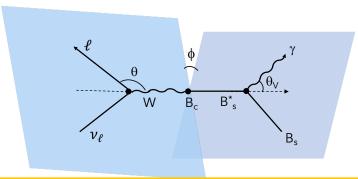
Impact of NP encoded in the NP couplings ϵ and in the new operators -> new FF

 $B_c \rightarrow P$

$$\begin{split} \frac{d\Gamma(B_c \to P\bar{\ell}\nu_\ell)}{dq^2} &= \frac{G_F^2 |V_{CKM}|^2 \lambda^{1/2}}{128 \, m_{B_c}^3 \pi^3 q^2} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \\ &\left\{ \left| m_\ell (1 + \epsilon_V^\ell + \epsilon_R^\ell) + \frac{q^2 \epsilon_S^\ell}{m_Q - m_q} \right|^2 (m_{B_c}^2 - m_P^2)^2 f_0^2(q^2) \right. \\ &\left. + \lambda \left[\frac{1}{3} \left| m_\ell (1 + \epsilon_V^\ell + \epsilon_R^\ell) f_+(q^2) + \frac{4q^2}{m_{B_c} + m_P} \epsilon_T^\ell f_T(q^2) \right|^2 + \frac{2q^2}{3} \left| (1 + \epsilon_V^\ell + \epsilon_R^\ell) f_+(q^2) + 4 \frac{m_\ell}{m_{B_c} + m_P} \epsilon_T^\ell f_T(q^2) \right|^2 \right] \right\} \end{split}$$

Semileptonic B_c decays

 $B_c \rightarrow V$



$$\begin{split} I_i &= |1 + \epsilon_V|^2 I_i^{\text{SM}} + |\epsilon_R|^2 I_i^{\text{NP},R} + |\epsilon_P|^2 I_i^{\text{NP},P} + |\epsilon_T|^2 I_i^{\text{NP},T} + 2\text{Re}[\epsilon_R(1 + \epsilon_V^*)] I_i^{\text{INT},R} \\ &+ 2\text{Re}[\epsilon_P(1 + \epsilon_V^*)] I_i^{\text{INT},P} + 2\text{Re}[\epsilon_T(1 + \epsilon_V^*)] I_i^{\text{INT},T} \\ &+ 2\text{Re}[\epsilon_R \epsilon_T^*] I_i^{\text{INT},RT} + 2\text{Re}[\epsilon_P \epsilon_T^*] I_i^{\text{INT},PT} + 2\text{Re}[\epsilon_P \epsilon_R^*] I_i^{\text{INT},PR} \end{split}$$

$$\begin{split} I_7 &= 2\mathrm{Im}[\epsilon_R(1+\epsilon_V^*)]I_7^{\mathrm{INT},R} + 2\mathrm{Im}[\epsilon_P(1+\epsilon_V^*)]I_7^{\mathrm{INT},P} + 2\mathrm{Im}[\epsilon_T(1+\epsilon_V^*)]I_7^{\mathrm{INT},T} \\ &+ 2\mathrm{Im}[\epsilon_R\epsilon_T^*]I_7^{\mathrm{INT},RT} + 2\mathrm{Im}[\epsilon_P\epsilon_T^*]I_7^{\mathrm{INT},PT} + 2\mathrm{Im}[\epsilon_P\epsilon_R^*]I_7^{\mathrm{INT},PR}, \end{split}$$

$$\begin{split} H_{0} &= \frac{1}{2m_{V}(m_{B_{c}} + m_{V})\sqrt{q^{2}}} \Big((m_{B_{c}} + m_{V})^{2} (m_{B_{c}}^{2} - m_{V}^{2} - q^{2}) A_{1}(q^{2}) - \lambda(m_{B_{c}}^{2}, m_{V}^{2}, q^{2}) A_{2}(q^{2}) \\ H_{\pm} &= \frac{(m_{B_{c}} + m_{V})^{2} A_{1}(q^{2}) \mp \sqrt{\lambda(m_{B_{c}}^{2}, m_{V}^{2}, q^{2})} V(q^{2})}{m_{B_{c}} + m_{V}} \\ H_{t} &= -\frac{\sqrt{\lambda(m_{B_{c}}^{2}, m_{V}^{2}, q^{2})}}{\sqrt{q^{2}}} A_{0}(q^{2}) \end{split}$$

$$\begin{split} \frac{d^4 \Gamma(B_c \rightarrow V(\rightarrow P\gamma)\bar{\ell}\nu_{\ell})}{dq^2 d\cos\theta_V d\cos\theta \, d\phi} &= \mathcal{N}_{\gamma} |\vec{p}_V| \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \\ & \left\{I_{1s} \sin^2\theta_V + I_{1c} \left(3 + \cos 2\theta_V\right) \right. \\ & \left. + (I_{2s} \sin^2\theta_V + I_{2c} \left(3 + \cos 2\theta_V\right)\right) \cos 2\theta \right. \\ & \left. + I_3 \sin^2\theta_V \sin^2\theta \cos 2\phi + I_4 \sin 2\theta_V \sin 2\theta \cos \phi \right. \\ & \left. + I_5 \sin 2\theta_V \sin \theta \cos \phi \right. \\ & \left. + (I_{6s} \sin^2\theta_V + I_{6c} \left(3 + \cos 2\theta_V\right)\right) \cos \theta \right. \\ & \left. + I_7 \sin 2\theta_V \sin \theta \sin \phi + I_8 \sin 2\theta_V \sin 2\theta \sin \phi \right. \\ & \left. + I_9 \sin^2\theta_V \sin^2\theta \sin 2\phi \right\} \end{split}$$

angular coefficient functions depend on NP couplings and FF

$$\begin{aligned} H_{\pm}^{NP} &= \frac{1}{\sqrt{q^2}} \Big\{ \Big(m_{B_c}^2 - m_V^2 \pm \sqrt{\lambda(m_{B_c}^2, m_V^2, q^2)} \Big) (T_1 + T_2) + q^2 (T_1 - T_2) \Big\} \\ H_L^{NP} &= 4 \Big\{ \frac{\lambda(m_{B_c}^2, m_V^2, q^2)}{m_V (m_{B_c} + m_V)^2} T_0 + 2 \frac{m_{B_c}^2 + m_V^2 - q^2}{m_V} T_1 + 4m_V T_2 \Big\} \end{aligned}$$

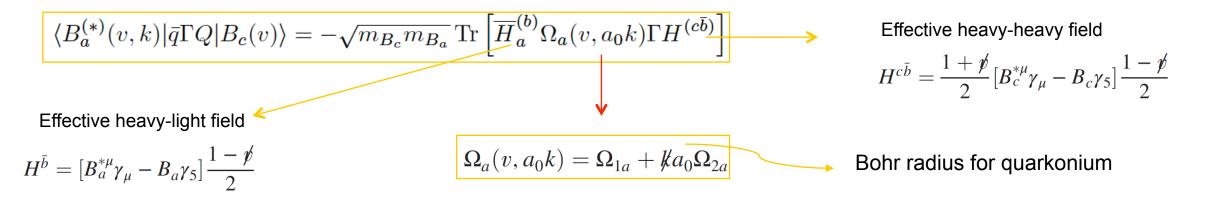
 $B_c {\rightarrow} B^{(^{\star})}{}_a \ell \, \nu_\ell \quad a{=}s,d$

Underlying transition: $c \rightarrow s,d$

 $m_b >> m_c \rightarrow$ the b quark is not deflected \rightarrow the velocity of the final meson is the same as in the initial state

momentum transferred to leptons: $q=(m_{Bc}-m_{Ba})v-k$ with $v.k=O(1/m_b)$ residual momentum

Matrix elements computed using the trace formalism (as for Heavy-Light)



Only two independent functions appear for all the possible Dirac structures Γ