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• A few features of fitting for semileptonics:


• Don’t tend to parameterise functions analytically. 


• PDF shapes depend on decay model.


• Multi-dimensional fits common to extract most info.


• Large yields.


• Low purity - strong dependence on background.


• Simulation size leads to non-negligible systematics.
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Template fitting

Shape variations during minimisation

1D projections insufficient for fit quality

Efficient data management needed

Control samples and ad-hoc variations

Barlow-Beeston or bootstrapping



• RooFit still most common tool.


• Templates provided by RooHistPDF.


• Limited to three explicit dimensions. 


• Why histograms and not KDE?


• Much faster and resolution wide c.f. bin 
width.

RooFit implementation
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LHCb-PAPER-2017-035

• RooHistFactory builds upon RooFit.


• Provides Barlow-Beeston-lite implementation.


• Also allows ad-hoc systematic variations.


• Nice tutorial from Phoebe (old but gold) [link]

• If one only has one missing neutrino, more options open up. 

https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2017-035.html
https://indico.cern.ch/event/509900/contributions/2031935/attachments/1265020/1872055/histfactory.pdf


• Partial reconstruction imprints shape dependence.


• Decay model dealt with separately (see later), but what about detector effects 
such as data/MC agreement?


• HistFactory systematic variations allow for polynomial interpolation between 1σ 
variations.

Systematic shape variations
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LHCb-PAPER-2022-039
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Figure 61: Projection of the nominal B0 ! DDX multibody template along with the histograms
corresponding to the variation parameters ↵i = ±1. The term Linear (quadratic), ±1� in the
legend corresponds to templates weighted with w1(↵1 = ±1) (w2(↵2 = ±1)).
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LHCb internal 

https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2022-039.html


• What about the decay model? Could also use HistFactory variations.


• This ignores correlations in the uncertainties.


• Fine for systematics but what if the shapes are parameters of interest? e.g. 
form factors or Wilson Coefficients.


• Brute force solution - event-by-event reweighing for every likelihood call.


• Reweighting exact, no assumptions on correlations or interpolation.


• Prohibitively slow, even for smaller size yields.

Decay model
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• One get out: If we measure form factors of muonic mode, uncertainties should be 
sub-leading and then one doesn’t need to vary them in the fit.



• Helicity Amplitude Module for Matrix Element Reweighting [Eur. Phys. J. C 80, 
883 (2020)].


• Decompose amplitude into sub-parts, each with different linear dependence on 
parameters of interest.

HAMMER

7• Best place to find documentation is on the webpage: https://hammer.physics.lbl.gov/

Helicity suppressed .

i: ÷::*."""

mnisi
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Fig. 3 Top: Illustrations of biases from fitting an SM template to three NP ‘truth’ benchmark models: the 2HDM type II with
SqRlL = �2 (left), SqRlL = 0.75i (middle), and the R2 leptoquark model with SqLlL = 8TqLlL = 0.25+0.25i (right). The orange dot
corresponds to the predicted ‘true value’ of R(D(⇤)) for the NP model, to be compared to the recovered 68%, 95% and 99% CLs of
the SM fit to the NP Asimov data sets (with uncertainties estimated to correspond to ⇠ 5 ab�1) in shades of red. Bottom: The best
fit regions for the 2HDM and R2 model Wilson coe�cients obtained from fitting R(D(⇤)) NP predictions to the recovered R(D(⇤))
CLs for each NP model. The shades of red denote CLs as in the top row. The best fit (true value) Wilson coe�cients are shown by
black (orange) dots.

of form factors, Fi, that encode the physics of hadronic
transitions (if any).3 In general, then, an amplitude may
be written in the form

M
{s}�

{q}
�
=

X

↵,i

c↵ Fi

�
{q}

�
A

{s}
↵i

�
{q}

�
, (6)

in which {s} are a set of external quantum numbers
and {q} the set of four-momenta.4 The object A↵i is
an NP- and FF-generalized amplitude tensor. In the
case of cascades, relevant for B ! D

(⇤,⇤⇤)(! DY ) ⌧(!

3In all b ! c processes currently handled by Hammer (see Table 3

for a list) the form factors are functions of q2 =
�
pHb

� pHc

�2
,

or equivalently of the dimensionless kinematic variable,

w = v · v0 =
m2

Hb
+m2

Hc
� q2

2mHb
mHc

, (5)

with four velocities v = pHb
/mHb

and v0 = pHc/mHc . For decays
with multi-hadron final states, such as the ⌧ ! n⇡, n � 3, the
form factors are also dependent on multiple invariant masses of
the final state hadrons. Thus, b ! c⌧⌫ decays followed by with
subsequent hadronic ⌧ decays involve at least two separate sets
of hadronic functions at the amplitude level.
4The momenta of an event passed to the library must all be
specified in the same frame. The choice of frame is arbitrary.

X⌫)⌫̄ decays, the amplitude tensor may itself be the
product of several subamplitudes, summed over several
sets of internal quantum numbers. The corresponding
polarized di↵erential rate

d�
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=
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�
W↵i�j , (7)

in which the phase space di↵erential form dPS includes
on-shell �-functions and geometric or combinatoric fac-
tors, as appropriate.

The outer product of the amplitude tensor, de-
fined as W ⌘ AA

†, is a weight tensor. The objectP
ij
FiF

†
j
W↵i�j in Eq. (7) is independent of the Wilson

coe�cients: Once this object is computed for a specific
{q} – an event – it can be contracted with any choice of
NP to generate an event weight. Similarly, on a patch
of phase space ⌦ — e.g., the acceptance of a detector
or a bin of a histogram — the marginal rate can now

• Oversimplified example: scalar part of a histogram.

https://arxiv.org/abs/2002.00020
https://arxiv.org/abs/2002.00020


• HAMMER being used more and more at LHCb.


• Sometimes just for convenience of reweighing things - reliable place to get 
debugged models from.


• In some analyses, we are directly using the reweighing procedure in the fits.


• Developed RooHammerModel [2007.12605] to interface with RooFit. 
Currently being used for the upcoming R(D+) analysis. 

HAMMER and RooFit
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• Overall works well and gives good pulls in toys. Increases likelihood call time by 
factor ~100, worth digging into once this round is over.
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Figure 1. Pull distributions for the fit parameters, corresponding to the ensemble of toy experiments used to
validate the framework. The result of a gaussian fit to each distribution is superimposed as a red curve.

6 Performance assessment

The average CPU time per minimization step is used to asses the performance. For this study, the
chosen benchmark model consists on a single component, ⌫

0 ! ⇡⇤+`�a`, which is represented
by a RooHammerModel object. To focus on a computationally more involved case from the
HAMMER side, instead of the CLN parameterisation previously inspected we now use the BGL222
scheme presented in Ref. [19], allowing us to float six form factor parameters in the fit. The
Wilson Coe�cients are fixed to their SM values, and the total yield is also fixed. Having form
factor parameters as the only fit variables ensures that the internal reweighting performed by the
RooHammerModel class occurs at every step, since caching of the histogram shape is not possible

– 12 –

https://arxiv.org/pdf/2007.12605.pdf


• Despite our best efforts, simulation size still seems creep up as systematic 
uncertainty.


• Lose a large fraction of effective size from the various re-weighting schemes.


• Barlow-Beeston-lite can undercover this uncertainty.


• Necessary to check with boostraps.


• Is Barlow-Beeston worth it? Fits faster and more stable without it.


• As long as have enough simulation to explore disagreement, perhaps not 
needed.


• Can have issues with empty bins, particularly with low stats fits.

Simulation uncertainties

9

LHCb-PAPER-2017-035

https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/LHCb-PAPER-2017-035.html


• ROOT starting to compete with large ecosystem of analysis in python.


• Original plan for R(Λc) was to implement it in zFit [SoftwareX 11 (2020) 100508]. 


• How to efficiently interface HAMMER here would be a big undertaking.


• Pyhf also an option, as the python replacement for HistFactory [JOSS, 6(58), 2823]


• HistFactory works, do we stick with it, try to improve timing, or move to python.


• Or both?

Beyond ROOT
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7

ability density functions. The parameter of interest, the
signal strength µ, is defined as a factor relative to the
SM expectation and is determined simultaneously with
the nuisance parameters using a simultaneous maximum-
likelihood fit to the binned distribution of data event
counts.

The leading systematic uncertainty is the normaliza-
tion uncertainty on the background yields. The yields of
the seven individual background categories are allowed
to float independently in the fit. However, each of them
is constrained assuming a normal constraint, centered at
the expected background yield obtained from simulation
and a standard deviation corresponding to 50% of the
central value. This value is motivated by a global normal-
ization di↵erence of (40±12)% between the o↵-resonance
data and simulation in the control regions CR2 and CR3
and also covers the uncertainty on the sample luminosity.
The remaining considered systematic uncertainties may
also influence the shape of the templates. Systematic
uncertainties originating from the branching fractions of
the leading B meson decays, the PID correction, and the
SM form factors are accounted for with three nuisance
parameters each to model correlations between the indi-
vidual SR and CR bins. The remaining systematic uncer-
tainties arise from the energy miscalibration of hadronic
and beam-background calorimeter energy deposits and
the tracking ine�ciency, and are each accounted for with
one nuisance parameter. The systematic uncertainty due
to the limited size of simulated samples is taken into ac-
count by one nuisance parameter per bin per background
category. This results in a total of 175 nuisance parame-
ters.

To validate the fitting software, an alternative ap-
proach based on a simplified Gaussian likelihood func-
tion (sghf) is developed. Tests of both pyhf and sghf

are performed using pseudo-experiments, in which both
statistical and systematic uncertainties are taken into ac-
count, including background normalizations. No bias in
µ and its uncertainty is observed, and the p value for the
data and fit model compatibility is found to be above
65%.

Shifts of the nuisance parameters corresponding to the
seven background sources are investigated before µ is re-
vealed. The parameters corresponding to the continuum
background yields are increased by, at most, one stan-
dard deviation, which confirms that they are not pulled
substantially in the fit given the observed di↵erence in
the normalization of the continuum simulation with re-
spect to the o↵-resonance data. The background yields in
the bins of CR2 and CR3 predicted by the fit are found
in agreement with the o↵-resonance data. No shift is
observed for the parameters corresponding to the back-
ground yields from charged and neutral B meson decays,
which are the dominant contributions in the most sensi-
tive SR bins.

A comparison of the data and fit results in the SR and

CR1 is shown in Fig. 3. The corresponding figure for
CR2 and CR3 can be found in the Supplemental Material
[25]. The signal purity is found to be 6% in the SR and
is as high as 22% in the three bins with BDT2 > 0.99.
Continuum events make up 59% of the background in the
SR and 28% of the events with BDT2 > 0.99.

FIG. 3: Yields in on-resonance data and as predicted by
the simultaneous fit to the on- and o↵-resonance data, cor-
responding to an integrated luminosity of 63 and 9 fb�1,
respectively. The predicted yields are shown individually
for charged and neutral B meson decays and the sum of
the five continuum categories. The leftmost three bins be-
long to CR1 with BDT2 2 [0.93, 0.95] and the other nine
bins correspond to the SR, three for each range of BDT2 2
[0.95, 0.97, 0.99, 1.0]. Each set of three bins is defined by
pT(K

+) 2 [0.5, 2.0, 2.4, 3.5]GeV/c. All yields in the rightmost
three bins are scaled by a factor of 2.

The signal strength is determined by the fit to be
µ = 4.2+3.4

�3.2 = 4.2+2.9
�2.8(stat)

+1.8
�1.6(syst), where the statis-

tical uncertainty is estimated using pseudo-experiments
based on Poisson statistics. The total uncertainty is ob-
tained by a profile likelihood scan, fitting the model with
fixed values of µ around the best-fit value while keep-
ing the other fit parameters free. The systematic un-
certainty is calculated by subtracting the statistical un-
certainty in quadrature from the total uncertainty. An
additional 10% theoretical uncertainty arising from the
knowledge of the branching ratio in the SM is not in-
cluded. The result corresponds to a branching frac-
tion of the B+ ! K+⌫⌫̄ decay of

⇥
1.9+1.6

�1.5

⇤
⇥ 10�5 =⇥

1.9+1.3
�1.3(stat)

+0.8
�0.7(syst)

⇤
⇥ 10�5.

This value is statistically compatible with the mea-
surements performed by previous experiments. Details
are given in the Supplemental Material [25]. The uncer-
tainty on the branching fraction is used to define a mea-
sure to compare the performance of the individual tag-
ging techniques. Assuming that this uncertainty scales as
the inverse square root of the integrated luminosity [48],
the inclusive approach is more than a factor of 3.5 bet-
ter per integrated luminosity than the hadronic tagging

Phys. Rev. Lett. 127, 181802 (2021)

https://arxiv.org/abs/1910.13429
https://joss.theoj.org/papers/10.21105/joss.02823
https://arxiv.org/abs/2104.12624
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