

Charm decays @ BESIII

Giulio Mezzadri (INFN Ferrara) – gmezzadr@fe.infn.it

On behalf of the BESIII Collaboration

Open LHCb workshop on semileptonic b \rightarrow c decays – 13/04/2023 – LNF

Charmed Mesons Decays

BEPCII @ IHEP (Beijing)

e⁺e⁻ central collider CM energy: 2. - 4.95 GeV L_{peak}(@3770): 10³³ cm⁻²s⁻¹

Collider

LINAC

Tiananmen square (天安门广场)~13 km

BESIII @ **BEPCII**

Datasets

$\sqrt{s}(\text{GeV})$	Integrated luminosity	Decay chain of interest	BESIII can shift its center of mass	
3.773	2. 93 fb ⁻¹	$e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$ $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^- \rightarrow 0$	mesons pairs at threshold	
\sqrt{s} (GeV)	Integrated luminosity(pb ⁻¹)	εε - ψ(3710) - D D -	@psi(3770) ~ 21 M D ^o and 16 M D ⁺	
4.178	${\bf 3189.0 \pm 0.9 \pm 31.9}$			
4. 189	$526.7 \pm 0.1 \pm 2.2$	$e^+e^- \rightarrow D^*_{a}D_{a}$	CLEO PRD80, 072001 (2009)	
4. 199	$526.0 \pm 0.1 \pm 2.1$	Total: 6.22 fb $^{-1}$	$0.8 \qquad \qquad \blacksquare \qquad D_s D_s \qquad \qquad \blacksquare \qquad 0.8 \qquad \blacksquare \qquad D_s^* D_s \qquad \qquad \square \qquad D_s^* D_s \qquad D_s^* D_s \qquad D_s^* D_s \qquad \qquad D_s^* D_s $	
4.209	$517.1 \pm 0.1 \pm 1.8$	$\hat{\Omega} = 0.6$	$0.6 \qquad \qquad$	
4.219	${\bf 514.6 \pm 0.1 \pm 1.8}$	۵ (T		
4.226	$1047.3\pm0.1\pm10.2$		0.2	
			3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25	
Clean sample, low production rate $/$ E_{CM} (GeV) $\sim 0.4 \text{ M} \text{ D}$ produced Higher production rate $BE(D^* \rightarrow y)$				
		string spreadoud	$\sim 6 \text{ M D}_{s} \text{ produced} \qquad 6$	

Charmed meson decay at threshold at BESIII

Variables of interest (calculated in e⁺e⁻ reference frame)

Mass beam constrained
$$M_{bc} = \sqrt{E_{beam}^2 - p_{candidate}^2}$$

Energy difference $dE = E_{candidate} - E_{beam}$

Missing mass $U_{miss} = E_{miss} - |\overrightarrow{p}_{miss}|$

Selected results

- $D_{(s)} \rightarrow hadrons + X$
 - $D \rightarrow \pi^{+}\pi^{+}\pi^{-}X$
 - $D_s \rightarrow \pi^+\pi^+\pi^- X$
 - $D_s \rightarrow K_s X$

Analyses that can provide input to R(X) measuments at LHCb

- $D_{(s)} \rightarrow hadrons$
 - $D \rightarrow$ multihadrons
 - $D \rightarrow K_s \pi^0 \omega$
 - $D_s \rightarrow \omega \pi^+ \eta$
 - $D_s \rightarrow \pi^+\pi^-\eta$
 - $D_s \rightarrow K \pi^+\pi^+\pi^0$
 - D_s \rightarrow K⁻K⁺π⁺π⁺π⁻
 - $D_s \rightarrow K_s K_s \pi^+$
 - $D_s \rightarrow K_s K^+ \pi^0$

 $D^{O(+)} \rightarrow \pi^+ \pi^- X$

PRD 107 (2023) 032002

Tag modes: $D^0 \rightarrow K^+\pi^-$ and $D^- \rightarrow K^-\pi^+\pi^-$

Number of produced final state is estimated in $M_{3\pi}$ mass bins through dedicated detector response matrix:

$$N_{\mathrm{prod}}^{i} = \sum_{j=1}^{N_{\mathrm{intervals}}} (\epsilon^{-1})_{ij} N_{\mathrm{obs}}^{j}$$

Quantum correlation effects:

$$\mathrm{d}\mathcal{B}_{\mathrm{sig}}^{\mathrm{corr}} = f_{\mathrm{QC}}^{\mathrm{corr}} \times \mathrm{d}\mathcal{B}_{\mathrm{sig}}$$

$$f_{\rm QC}^{\rm corr} = \frac{1}{1 - C_f (2f_{CP+} - 1)}$$
 $C_f = \frac{2rR\cos\delta}{1 + r^2}$

TABLE I. Input parameters for the QC correction.

Parameter	Value
$r_{K\pi} \delta_{K\pi}$	$\begin{array}{c} 0.0586 \pm 0.0002 \ [23] \\ (194.7^{+8.4}_{-17.0})^{\circ} \ [23] \end{array}$

Compatible with sum of exclusive final state. Little room for additional decays

 $D_{c} \rightarrow \pi^{+}\pi^{-}X$

arXiv:2212.13072

Only dataset at 4.178 GeV, L = 3.19/fbTwo D_s⁻ tag modes.

Extracted partial branching ratio with respect to $M_{3\pi}$ mass

11

 $\mathsf{D}^{\scriptscriptstyle 0(+)} \to \mathsf{K}_{\varsigma} \: \mathsf{X}$

ArXiv:2302.14488

Use full psi(3770) dataset, improve precision and compare with exclusive datasets

Extracted QC correction factor in two tag modes

CP tag mode	$D^0 \to K^+ K^-$	$D^0 \to K^0_S \pi^0$
$S_{ m measured}^{\pm}$	57779 ± 287	70512 ± 311
$M_{\rm measured}^{\pm}$	4760 ± 81	4068 ± 78
$f_{\rm CP+}$	$0.413 \pm$	0.010
Correction factor	$1.0204 \pm$	0.0024

Decay mode	PDG (%) [3]	This study $(\%)$	$\mathcal{B}_{\mathrm{exclusive}}^{\mathrm{sum}}$ (%)
$D^+ \to K^0_S X$	30.5 ± 2.5	$32.78 \pm 0.13 \pm 0.27$	31.68 ± 0.32
$D^0 \to K^0_S X$	23.5 ± 2.0	$20.54 \pm 0.12 \pm 0.18$	18.16 ± 0.72

Some space for additional new $D^{0(+)}$ decays with K_s

D to multihadrons

13

Extraction of absolute BR of 20 CS final states with multihadrons using $\psi(3770)$ dataset

D to multihadrons

TABLE II. The DT yields tagged by $CP \mp \text{tags} (M_{\text{measured}}^{\pm})$, the CP+ fractions (f_{CP+}) , and the QC factors (f_{QC}) . The f_{CP+} for $D^0 \to \pi^+ \pi^- \pi^0$ is quoted from Ref. [34]; the f_{CP+} values for $D^0 \to \pi^+ \pi^- 2\pi^0$, $D^0 \to 2\pi^+ 2\pi^- \pi^0$, $D^0 \to \pi^+ \pi^- 3\pi^0$, and $D^0 \to 2\pi^+ 2\pi^- 2\pi^0$ are determined in this work; and the f_{CP+} values for $D^0 \to 4\pi^0$ and $D^0 \to 3\pi^0\eta$ are taken to be 1 based on theoretical expectations. The uncertainties are statistical only.

Decay	$M^{ m measured}$	$M^+_{ m measured}$	f_{CP+}	f _{QC} (%)
$D^0 o \pi^+ \pi^- \pi^0$			0.973 ± 0.017 [34]	93.5 ± 0.5
$D^0 ightarrow \pi^+ \pi^- 2 \pi^0$	65.7 ± 11.1	169.8 ± 13.9	0.682 ± 0.077	97.4 ± 0.7
$D^0 o 4\pi^0$			1	93.1 ± 0.5
$D^0 \rightarrow 3\pi^0 \eta$			1	93.1 ± 0.5
$D^0 ightarrow 2\pi^+ 2\pi^- \pi^0$	37.8 ± 8.3	35.5 ± 6.6	0.438 ± 0.104	100.9 ± 0.9
$D^0 ightarrow \pi^+ \pi^- 3 \pi^0$	$5.2^{+3.5}_{-2.8}$	$6.8^{+3.4}_{-2.7}$	$0.520^{+0.338}_{-0.269}$	$99.7^{+3.0}_{-2.4}$
$D^0 \to 2\pi^+ 2\pi^- 2\pi^0$	$3.5^{+2.8}_{-2.1}$	15.9 ± 3.7	$0.790^{+0.269}_{-0.255}$	$95.9^{+2.2}_{-2.1}$

For the neutral final state extracted the Quantum correlation factors

For six of the largest yield, calculated CP asymmetry from their BR

No CP violation is observed

Decay	$\mathcal{B}^+_{ m sig}(imes 10^{-4})$	$\mathcal{B}_{\overline{\mathrm{sig}}}^{-}(\times 10^{-4})$	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)
$\pi^+\pi^-\pi^0$	134.8 ± 1.8	133.3 ± 1.8	$+0.6 \pm 0.9 \pm 0.4$
$\pi^+\pi^-2\pi^0$	97.6 ± 2.6	102.7 ± 2.7	$-2.5\pm1.9\pm0.7$
$2\pi^+\pi^-$	33.1 ± 1.0	32.3 ± 1.0	$+1.2 \pm 2.2 \pm 0.6$
$\pi^+ 2\pi^0$	48.3 ± 1.8	43.2 ± 1.7	$+5.6 \pm 2.7 \pm 0.5$
$2\pi^+\pi^-\pi^0$	116.7 ± 3.0	116.0 ± 3.0	$+0.3\pm1.8\pm0.8$
$2\pi^+\pi^-2\pi^0$	102.7 ± 5.6	111.6 ± 5.8	$-4.2\pm3.8\pm1.3$

PRD 105 (2022) 032009

 $D \rightarrow K_{s} \pi^{0} \omega$

Restrict available phase space for new physics in $D \rightarrow \overline{K} \pi I^{+}I^{-}$ and test statistical isospin model predictions

Decay mode	\mathcal{B}_{sig} (%)	$\mathcal{B}_{\mathrm{PDG}}$ (%)
$D^0 \to K^- \pi^+ \omega$	$3.392 \pm 0.044 \pm 0.085$	3.0 ± 0.6
$D^0 \to K^0_S \pi^0 \omega$	$0.848 \pm 0.046 \pm 0.031$	
$D^+ \to K^0_S \pi^+ \omega$	$0.707 \pm 0.041 \pm 0.029$	

$$\mathcal{R}^{0} \equiv \frac{\mathcal{B}(D^{0} \to K_{S}^{0} \pi^{0} \omega)}{\mathcal{B}(D^{0} \to K^{-} \pi^{+} \omega)} = 0.23 \pm 0.01_{\text{stat}} \pm 0.01_{\text{syst}}$$

$$\mathcal{R}^{+} \equiv \frac{\mathcal{B}(D^{+} \to K^{0}_{S}\pi^{+}\omega)}{\mathcal{B}(D^{0} \to K^{-}\pi^{+}\omega)} = 0.21 \pm 0.01_{\text{stat}} \pm 0.01_{\text{syst}}$$

Both results deviates from predictions (0.4 and 0.9)

Difference may arise from strong phase between final state decay amplitudes 15

 $D_{s}^{+} \rightarrow \omega \pi^{+} \eta$

PRD 107 (2023) 052010

Use larger D_c dataset from 4.128 to 4.226 GeV. Reconstruct $\omega \rightarrow \pi^+\pi^-\pi^0$

First observation of this process at 7.6 σ level. No structures in intermediate processes.

 $\mathcal{B}(D_s^+ \to \omega \pi^+ \eta) = (0.54 \pm 0.12 \pm 0.04)\%$

Branching ratio to provide further detail for $D_{c} \rightarrow \pi\pi\pi X$ contribution

 $D_{c} \rightarrow \pi^{+}\pi^{+}\pi^{-}\eta$

PRD 104 (2021) L071101

Missing $D_{c} \rightarrow \eta X$ final state with a very large contribution. Use 6.32/fb in 4.178-4.226 GeV range

First measurement of the singly Cabibbo suppressed decay. Analysis with 6.32/fb

Amplitude analysis is performed to take into account in efficiency estimation all possible intermediate states Dominant intermediate process $D_s \rightarrow K^*\rho$

No CP violation observed by looking at $D_s^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ and $D_s^- \rightarrow K^- \pi^+ \pi^- \pi^0$

Events / (40 MeV/c²)

0.5

 $M_{\pi^*\pi^*\pi^0}$ (GeV/c²)

data total fit

background

 $\mathsf{D}_{\mathsf{s}} \to \mathsf{K}^{-}\mathsf{K}^{+}\pi^{+}\pi^{+}\pi^{-}_{_{\mathsf{JHEP}\,07\,(2022)\,051}}$

Analysis with 6.32/fb

First ever amplitude analysis is performed to take into account in efficiency estimation all possible intermediate states, but only with $>5\sigma$ significance are kept in the final result.

Good agreement with PDG but improved precision

PRD 105 (2022) L051103

D_c decay can be also used to shed new light on nature of light hadrons, like $f_0(1710)$

Due to high interference between f_0 and a_0 , in the paper denoted generically as S-state.

Branching ratio of the full process is measured and it is compatible with PDG

Based on $f_0(1710)$ results, it is necessary that an $a_0(1710)^{\circ}$ state exists, as observed by BaBar (Phys. Rev. D 104, 072002 (2021))

An a₀(1710)^o charged partner is also expected in KsK mass 20 to be searched in $D_{s} \rightarrow K_{s}K^{+}\pi^{0}$

 $D_{\varsigma} \rightarrow K_{\varsigma}K^{+}\pi^{0}$

PRL 129 (2022) 182001

Using 6.28/fb D_s data, study the decay to search for possible $a_0(1710)$ charged partner

Total BR is found to be compatible with previous measurements

Observed a charged a_0 -like structure in $K_s K^+$ mass with significance greater than 10 σ . This results supports the existence of a new a_0 triplet, as predicted by Phys. Rev. D 79, 074009 (2009) and other works

Its mass is 100 MeV larger than expectation for $f_0(1710)$ isospin-1 partner. To extract further details on its nature, combined amplitude analysis of $D_s \rightarrow K_s K_s \pi^+$ and $D_s \rightarrow K_s K \pi^0$ is needed

Summary and outlook

- BESIII powerful machine for charmed hadron decays
 - Not only as input for B physics, but for CKM matrix measurement, LQCD calculation, Light Hadrons
- In the next future, additional steps:
 - A total of 20/fb at psi(3770) on tape by early 2024
 - Crucial contribution to QC measurement, CKM gamma extraction
 - Upgraded accelerator will provide more efficient data taking for D_s analyses
 - Further reduce systematics for R measurements
 - New data always allows for improved techniques to reduce errors
 - Tag based analyses
 - Machine learning

