

Talk Overview

Talk Overview

More than a decade of $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ is "lost" :-(

For $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ traditionally single form factor parametrization (Caprini-Lellouch-Neubert, CLN) was used. Nucl.Phys. B530 (1998) 153-181

Measurements directly determined the

 parameters and quoted these with correlations.Problem: Theory knowledge advances; today more general parametrization are preferred (BGL, ...)

Experiment	$\begin{gathered} \eta_{\mathrm{EW}} \mathcal{F}(1)\left\|V_{c b}\right\|\left[10^{-3}\right] \text { (rescaled) } \\ \eta_{\mathrm{EW}} \mathcal{F}(1)\left\|V_{c b}\right\|\left[10^{-3}\right] \text { (published) } \end{gathered}$	$\begin{gathered} \rho^{2} \text { (rescaled) } \\ \rho^{2} \text { (published) } \end{gathered}$
ALEPH [497]	$\begin{gathered} \hline 31.38 \pm 1.80_{\text {stat }} \pm 1.24_{\text {syst }} \\ 31.9 \pm 1.8_{\text {stat }} \pm 1.9_{\text {syst }} \end{gathered}$	$\begin{gathered} \hline 0.488 \pm 0.226_{\text {stat }} \pm 0.146_{\text {syst }} \\ 0.37 \pm 0.26_{\text {stat }} \pm 0.14_{\text {syst }} \end{gathered}$
CLEO [501]	$\begin{gathered} 40.16 \pm 1.24_{\text {stat }} \pm 1.54_{\text {syst }} \\ 43.1 \pm 1.3_{\text {stat }} \pm 1.8_{\text {syst }} \end{gathered}$	$\begin{gathered} 1.363 \pm 0.084_{\text {stat }} \pm 0.087_{\text {syst }} \\ 1.61 \pm 0.09_{\text {stat }} \pm 0.21_{\text {syst }} \end{gathered}$
OPAL excl [498]	$\begin{gathered} 36.20 \pm 1.58_{\text {stat }} \pm 1.47_{\text {syst }} \\ 36.8 \pm 1.6_{\text {stat }} \pm 2.0_{\text {syst }} \end{gathered}$	$\begin{gathered} 1.198 \pm 0.206_{\text {stat }} \pm 0.153_{\text {syst }} \\ 1.31 \pm 0.21_{\text {stat }} \pm 0.16_{\text {syst }} \end{gathered}$
OPAL partial reco [498]	$\begin{gathered} 37.44 \pm 1.20_{\mathrm{stat}} \pm 2.32_{\mathrm{syst}} \\ 37.5 \pm 1.2_{\mathrm{stat}} \pm 2.5_{\mathrm{syst}} \end{gathered}$	$\begin{gathered} 1.090 \pm 0.137_{\text {stat }} \pm 0.297_{\text {syst }} \\ 1.12 \pm 0.14_{\text {stat }} \pm 0.29_{\text {syst }} \\ \hline \end{gathered}$
DELPHI partial reco [499]	$\begin{gathered} 35.52 \pm 1.41_{\text {stat }} \pm 2.29_{\text {syst }} \\ 35.5 \pm 1.4_{\text {stat }}+2.4{ }_{-2 \text { syst }}^{+2} \end{gathered}$	$\begin{gathered} 1.139 \pm 0.123_{\text {stat }} \pm 0.382_{\text {syst }} \\ 1.34 \pm 0.14_{\text {stat }}{ }_{-0.222 \text { syst }}^{+0.24} \end{gathered}$
DELPHI excl [500]	$\begin{gathered} 35.87 \pm 1.69_{\text {stat }} \pm 1.95_{\text {syst }} \\ 39.2 \pm 1.8_{\text {stat }} \pm 2.3_{\text {syst }} \end{gathered}$	$\begin{aligned} & 1.070 \pm 0.141_{\text {stat }} \pm 0.153_{\text {syst }} \\ & 1.32 \pm 0.15_{\text {stat }} \pm 0.33_{\text {syst }} \end{aligned}$
Belle [502]	$\begin{aligned} & 34.82 \pm 0.15_{\text {stat }} \pm 0.55_{\text {syst }} \\ & 35.06 \pm 0.15_{\text {stat }} \pm 0.56_{\text {syst }} \end{aligned}$	$\begin{aligned} & 1.106 \pm 0.031_{\text {stat }} \pm 0.008_{\text {syst }} \\ & 1.106 \pm 0.031_{\text {stat }} \pm 0.007_{\text {syst }} \end{aligned}$
BABAR excl [503]	$\begin{gathered} 33.37 \pm 0.29_{\text {stat }} \pm 0.97_{\text {syst }} \\ 34.7 \pm 0.3_{\text {stat }} \pm 1.1_{\text {syst }} \end{gathered}$	$\begin{gathered} 1.182 \pm 0.048_{\text {stat }} \pm 0.029_{\text {syst }} \\ 1.18 \pm 0.05_{\text {stat }} \pm 0.03_{\text {syst }} \end{gathered}$
BABAR D*0 [507]	$\begin{gathered} 34.55 \pm 0.58_{\text {stat }} \pm 1.06_{\mathrm{syst}} \\ 35.9 \pm 0.6_{\text {stat }} \pm 1.4_{\text {syst }} \\ \hline \end{gathered}$	$\begin{gathered} 1.124 \pm 0.058_{\text {stat }} \pm 0.053_{\text {syst }} \\ 1.16 \pm 0.06_{\text {stat }} \pm 0.08_{\text {syst }} \\ \hline \end{gathered}$
BABAR global fit [509]	$\begin{gathered} 35.45 \pm 0.20_{\mathrm{stat}} \pm 1.08_{\mathrm{syst}} \\ 35.7 \pm 0.2_{\mathrm{stat}} \pm 1.2_{\mathrm{syst}} \end{gathered}$	$\begin{gathered} 1.171 \pm 0.019_{\text {stat }} \pm 0.060_{\text {syst }} \\ 1.21 \pm 0.02_{\text {stat }} \pm 0.07_{\text {syst }} \end{gathered}$
Average	$35.00 \pm 0.11_{\text {stat }} \pm 0.34_{\text {syst }}$	$1.121 \pm 0.014_{\text {stat }} \pm 0.019_{\text {syst }}$

Old measurements cannot be updated the underlying distributions were not provided but only the result of the fit.

Obviously we should avoid this in the future.

The emergence of beyond zero-recoil lattice:

Very exciting times:

A. Bazavov et al. [FNAL/MILC] [Eur. Phys. J. C 82, 1141 (2022), arXiv:2105.14019]
J. Harrison \& T.H. Davies [HPQCD] [arXiv:2304.03137 [hep-lat]]

After more than 10 years in the making, we have beyond zero recoil LQCD predictions for $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$

Three groups: One published, One freshly on arxiv, One preliminary :

Tension with measured shapes

BGL is much better, model independent

So is it ok to just present results with Boyd Grinstein Lebed (BGL) ?
BGL looks great:

- it removes the relation between slope and curvature on the leading form factor; data can pull it.
- Slop and curvature of the form factor ratios $R_{1 / 2}$ are not constrained, data can pull it.

Beautiful unbinned 4D fit (!) from BaBar [Phys. Rev. Lett. 123, 091801 (2019)]

$a_{0}^{f} \times 10^{2}$	$a_{1}^{f} \times 10^{2}$	$a_{1}^{F_{1}} \times 10^{2}$	$a_{0}^{g} \times 10^{2}$	$a_{1}^{g} \times 10^{2}$	$\left\|V_{c b}\right\| \times 10^{3}$
1.29	1.63	0.03	2.74	8.33	38.36
± 0.03	± 1.00	± 0.11	± 0.11	± 6.67	± 0.90

TABLE I. The $N=1$ BGL expansion results of this analysis, including systematic uncertainties.

$\rho_{D^{*}}^{2}$	$R_{1}(1)$	$R_{2}(1)$	$\left\|V_{c b}\right\| \times 10^{3}$
0.96 ± 0.08	1.29 ± 0.04	0.99 ± 0.04	38.40 ± 0.84

TABLE II. The CLN fit results from this analysis, including systematic uncertainties.

Truncation Order

Model independence is a step forward, but choices have to be made here as well..

$$
g(z)=\frac{1}{P_{g}(z) \phi_{g}(z)} \sum_{n=0}^{N} a_{n} z^{n}, \quad f(z)=\frac{1}{P_{f}(z) \phi_{f}(z)} \sum_{n=0}^{N} b_{n} z^{n}, \quad \mathcal{F}_{1}(z)=\frac{1}{P_{\mathcal{F}_{1}}(z) \phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{N} c_{n} z^{n}
$$

One Problem you face as an experimentalist: where do you truncate?

Truncate too soon:

- Model dependence in extracted result for $\left|V_{c b}\right| ?$

Truncate too late:

- Unnecessarily increase variance on $\left|V_{c b}\right|$?

Is there an ideal truncation order?

What about additional constraints?

Nested Hypothesis Tests or Saturation Constraints

Z. Ligeti, D. Robinson, M. Papucci, FB

 [arXiv:1902.09553, PRD100,013005 (2019)]Use a nested hypothesis test (NHT) to determine optimal truncation order

Challenge nested fits

Test statistics \& Decision boundary

$$
\Delta \chi^{2}=\chi_{N}^{2}-\chi_{N+1}^{2} \quad \Delta \chi^{2}>1
$$

Distributed like a χ^{2}-distribution with 1 dof (Wilk's theorem)

Gambino, Jung, Schacht [arXiv:1905.08209, PLB]

Constrain contributions from higher order coefficients using unitarity bounds

$$
\sum_{n=0}^{N}\left|a_{n}\right|^{2} \leq 1 \quad \sum_{n=0}^{N}\left(\left|b_{n}\right|^{2}+\left|c_{n}\right|^{2}\right) \leq 1
$$

e.g.

$$
\chi^{2} \rightarrow \chi^{2}+\chi_{\text {penalty }}^{2}
$$

$\chi_{\text {penalty }}^{2}$

Nesting Procedure

Steps:

1
Carry out nested fits with one parameter added

Accept descendant over parent fit, if $\Delta \chi^{2}>1$

Repeat 1 and 2 until you
find stationary points

If multiple stationary points
remain, choose the one with
smallest N, then smallest χ^{2}

> Reject scenarios that
> produce strong correlations
> (= blind directions)
> 5

Nesting Procedure

Steps:

1
Carry out nested fits with one parameter added

2

Repeat 1 and 2 until you

find stationary points

If multiple stationary points
remain, choose the one with smallest N, then smallest χ^{2}

Reject scenarios that produce strong correlations (= blind directions)

Nesting Procedure

Steps:

1
Carry out nested fits with one parameter added

2
Accept descendant over parent fit, if $\Delta \chi^{2}>1$

3
Repeat 1 and 2 until you find stationary points

If multiple stationary points
remain, choose the one with smallest N, then smallest χ^{2}

Nesting Procedure

Steps:

1
Carry out nested fits with one parameter added

2
Accept descendant over parent fit, if $\Delta \chi^{2}>1$

3
Repeat 1 and 2 until you find stationary points

If multiple stationary points remain, choose the one with smallest N, then smallest χ^{2}

Reject scenarios that produce strong correlations (= blind directions)

Nesting Procedure

Steps:

1
Carry out nested fits with one parameter added

2
Accept descendant over parent fit, if $\Delta \chi^{2}>1$

Repeat 1 and 2 until you find stationary points

If multiple stationary points remain, choose the one with smallest N, then smallest χ^{2}

Reject scenarios that produce strong correlations (= blind directions)

Toy study to illustrate possible bias

Toy study to illustrate possible bias

Use the central values of the BGL222 fit as a starting point
to add fine structure
fit $=$ fit to prel. 2017 Belle data

Toy Test

Produce ensemble of toy measurements using meas. covariance \& BGL3зз central values

Each toy is fitted to build the descendant tree and carry out a
NHT to select its preferred $B G L n_{a} n_{b} n_{c}$

$$
\xrightarrow{\text { Construct Pulls }}
$$

'1-times'	'10-times'	
Parameter	Value $\times 10^{2}$	Value $\times 10^{2}$
\tilde{a}_{2}	2.6954	26.954
\tilde{b}_{2}	-0.2040	-2.040
\tilde{c}_{3}	0.5350	5.350
\downarrow		

Create a "true" higher order Hypothesis of order BGLззз

As calculated from selected $B G L n_{a} n_{b} n_{c}$ fit of each toy

If methodology unbiased, should follow a standard normal distribution (mean 0, width 1)

Bias

\rightarrow Procedure produces unbiased $\left|\mathrm{V}_{\mathrm{cb}}\right|$ values, just picking a given hypothesis (BGL_{122}) does not

Relative Frequency of selected Hypothesis:

	BGL $_{122}$	BGL $_{212}$	BGL $_{221}$	BGL $_{222}$	BGL $_{223}$	BGL $_{232}$	BGL $_{322}$	BGL $_{233}$	BGL $_{323}$	BGL $_{332}$	BGL $_{333}$
1-times	6%	0%	37%	27%	6%	6%	11%	0%	2%	4%	0.4%
10-times	0%	0%	8%	38%	14%	8%	16%	3%	4%	8%	1%

My three take-away points:

1.

BGL removes the (theory)-model dependent assumptions of CLN; great step forward

BUT

still choices have to be made (truncation, unitarity in or out) that influence the outcome of the interpretation of the data

My three take-away points:

4

BGL removes the (theory)-model dependent assumptions of CLN; great step forward

BUT

still choices have to be made (truncation, unitarity in or out) that influence the outcome of the interpretation of the data

2.

What if someone comes along and wants to fit something else to the data with different assumptions?

BGL with updated pole masses?
DM from MNSL(PoS LATTICE2022 (2023) 298)
BGJD (Eur.Phys.J.C 80 (2020) 4, 347)
BLPR (Phys. Rev. D 95, 115008 (2017))
BLPRXP (Phys. Rev. D 106, 096015 (2022))

My three take-away points:

1.

BGL removes the (theory)-model dependent assumptions of CLN; great step forward

BUT

still choices have to be made (truncation, unitarity in or out) that influence the outcome of the interpretation of the data

2.

What if someone comes along and wants to fit something else to the data with different assumptions?

BGL with updated pole masses?
DM from MNSL(PoS LATTICE2022 (2023) 298)
BGJD (Eur.Phys.J.C 80 (2020) 4, 347)
BLPR (Phys. Rev. D 95, 115008 (2017))
BLPRXP (Phys. Rev. D 106, 096015 (2022))

3.

What if someone wants to do something entirely else with the data we have not thought of today?
E.g. look for a bump for a sterile neutrino at large MM2, search for RH currents in angular distributions

Talk Overview

Possible Strategies

Possible Strategies

Omnifold: unbinned unfolding Phys. Rev. Lett. 124, 182001 (2020)

Full Angular Information without going to 4D

Full angular information can be encoded into 12 coefficients :

$\mathrm{d} \Gamma \quad G_{F}^{2}\left\|V_{c b}\right\|^{2} m_{B}^{3}$	Each of these coefficients
$\overline{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{V} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \chi}=\frac{2 \pi^{4}}{}$	is a function of $q^{2} \sim w$
$\times\left\{J_{1 s} \sin ^{2} \theta_{V}+J_{1 c} \cos ^{2} \theta_{V}\right.$	\downarrow
$+\left(J_{2 s} \sin ^{2} \theta_{V}+J_{2 c} \cos ^{2} \theta_{V}\right) \cos 2 \theta_{\ell}$	With some smart folding, one can "easily" determine them
$+J_{3} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \cos 2 \chi$	
$+J_{4} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \cos \chi+J_{5} \sin 2 \theta_{V} \sin \theta_{\ell} \cos \chi$	
$+\left(J_{6 s} \sin ^{2} \theta_{V}+J_{6 c} \cos ^{2} \theta_{V}\right) \cos \theta_{\ell}$	
$+J_{7} \sin 2 \theta_{V} \sin \theta_{\ell} \sin \chi+J_{8} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \sin \chi$	JHEP 05 (2013) 043 JHEP 05 (2013) 137
$\left.+J_{9} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \sin 2 \chi\right\}$	Phys. Rev. D 90, 094003 (2014) http://cds.cern.ch/record/1605179

How can we measure these coefficients?

Step 1: bin up phase-space in $q^{2} \sim w$ in however many bins you can afford

How can we measure these coefficients?

Step 1: bin up phase-space in $q^{2} \sim w$ in however many bins you can afford

Step 2: Determine the \# of signal events in specific phase-space regions

The coefficients are related to a weighted sun of events in a given q^{2} bin

$$
J_{i}=\frac{1}{N_{i}} \sum_{j=1}^{8} \sum_{k, l=1}^{4} \eta_{i j}^{\eta_{i j k}^{\theta_{i k}} n_{i i}^{\theta_{v}}}\left[x^{i} \otimes \theta_{t}^{j} \otimes \theta_{V}^{k}\right]
$$

Normalization Factor
E.g. for J_{3} : Split χ into 2 Regions

$$
a=1-1 / \sqrt{2}, b=a \sqrt{2}, c=2 \sqrt{2}-1, d=1-4 \sqrt{2} / 5
$$

$$
\begin{array}{ll}
{ }^{\prime}+^{\prime}: \chi \in[0, \pi / 4],[3 / 4 \pi, 5 / 4 \pi],[7 / 4 \pi, 2 \pi] & \tilde{N}_{+} \\
{ }^{\prime}-^{\prime}: \chi \in[\pi / 4,3 / 4 \pi],[5 / 4 \pi, 7 / 4 \pi] & \tilde{N}_{-}
\end{array}
$$

Step 3: Reverse Migration and Acceptance Effects

Resolution effects: events with a given "true" value of $\left\{q^{2}, \cos \theta_{\ell}, \cos \theta_{V}, \chi\right\}$ can fall into different reconstructed bins
E.g. w migration matrix

arXiv:2301.07529 [hep-ex]

Unfolded yields

Bkg subtracted yields

Step 4: Calculate J_{i} for a given w / q^{2} bin

$$
\begin{aligned}
& n_{+}^{q_{i}^{2}} \\
& n_{-}^{q_{i}^{2}}
\end{aligned} \rightarrow \hat{J}_{3}^{q_{i}^{2}}=\frac{1}{\Gamma} \times \frac{n_{+}^{q_{i}^{2}}-n_{-}^{q_{i}^{2}}}{4(4 / 3)^{2}}
$$

More involved for the other coefficients: need full experimental covariance between all measured w / q^{2} bins and coefficients (statistical overlap, systematics)

SM:

$\left\{J_{1 s}^{q_{i}^{2}}, J_{1 c}^{q_{i}^{2}}, J_{2 s}^{q_{i}^{2}}, J_{2 c}^{q_{i}^{2}}, J_{3}^{q_{i}^{2}}, J_{4}^{q_{i}^{2}}, J_{5}^{q_{i}^{2}}, J_{6 s}^{q_{i}^{2}}\right\}$

e.g. $5 \times 8=40$ coefficients

or full thing (SM + NP) with $5 \times 12=60$ coefficients

Talk Overview

1D versus Full Angular Sensitivities

1D versus Full Angular Sensitivities

1D versus Full Angular Sensitivities

1D versus Full Angular Sensitivities

Angular Coefficients also will allow us to better investigate what is going on with lattice versus data tensions..

Summary

Angular information is crucial to better study $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$:

The future will hopefully go towards open data ... but part of a longer discussion.

Unbinned unfolded data is a great new idea; best preserves the properties of the underlying data; but many details need to be ironed out

In the meantime: Binned angular coefficients seem a very promising strategy to preserve our measurements.

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{V} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \chi}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} m_{B}^{3}}{2 \pi^{4}} \\
& \times\left\{J_{1 s} \sin ^{2} \theta_{V}+J_{1 c} \cos ^{2} \theta_{V}\right. \\
& +\left(J_{2 s} \sin ^{2} \theta_{V}+J_{2 c} \cos ^{2} \theta_{V}\right) \cos 2 \theta_{\ell} \\
& +J_{3} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \cos 2 \chi \\
& +J_{4} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \cos \chi+J_{5} \sin 2 \theta_{V} \sin \theta_{\ell} \cos \chi \\
& +\left(J_{6 s} \sin ^{2} \theta_{V}+J_{6 c} \cos \theta_{V}\right) \cos \theta_{\ell} \\
& +J_{7} \sin 2 \theta_{V} \sin \theta_{\ell} \sin \chi+J_{8} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \sin \chi \\
& \left.+J_{9} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \sin 2 \chi\right\} .
\end{aligned}
$$

Backup

New HPQCD

Is it meaningful to combine LQCD and data that do not agree in shape? What does this mean for our $\left|V_{c b}\right|$ values? Can we trust $\mathscr{F}(1)$?

Same data / MC disagreement?

Omnifold

$$
p_{\text {unfolded }}^{(n)}(t)=\nu_{n}(t) p_{\text {Gen. }}(t)
$$

- UniFold: A single observable as input. This is an unbinned version of IBU.
- MultiFold: Many observables as input. Here, we use the six jet substructure observables in Fig. 2 to derive the detector response.
- OmniFold: The full event (or jet) as input, using the full phase space information.

