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# 2

Talk Overview

Measuring |Vub| and |Vcb|
* Decays don’t happen at quark level, non-perturbative physics make things
complicated
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* Hadronic transition matrix element needs to be Lorentz covariant

! Function of Lorentz vectors and scalars of the decay ! p
2
B , p

2
X , pB · pX

! On-shell B ! X decay: form factors encode non-perturbative physics

* Form factors unknown functions of q
2 = (pB � pX )2 = (p` + p⌫)2

* E.g. decay rate in the SM for B ! scalar ` ⌫̄` decay: f = single form factor

|Vqb|2 ⇥ �(B ! X ` ⌫̄`) = |Vqb|2 ⇥ G
2
F �0

h
f (q2)

i2

12 / 31

q

q

c

ℓ−

ν̄ℓVcb

q
q

1. Why we need to do better to 
preserve our experimental 
Information

2. From 1D projections to full 
angular information

Idea range from

“Open Data” 

to

“Reinterpretation  

friendly”  
observables
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The form factor normalization is constrained at zero-
recoil with hX = hA1

(1) = 0.906 ± 0.013 from Ref. [17]
for our nominal fit scenario. For the BGL form factor
fit, we truncate the series based on the result of a nested
hypothesis test (NHT) [40] with the additional constraint
that the inclusion of additional coe�cients do not result
in correlations of larger than r = 0.95. This leads to the
choice of na = 1, nb = 2, nc = 1 free parameters, with the
constraint for c0 defined in Eq. (12). More details about
the NHT can be found in Appendix B. For the CLN type
parameterization we determine three coe�cients: ⇢2 ,
R1(1), and R2(1).

Both form factor parameterizations are able to describe
the data with p-values of 7% and 6% for BGL and CLN,
respectively, and the extracted |Vcb| values of both deter-
minations are compatible. The fitted shapes are shown
in Fig. 9 (red and blue bands) and the numerical values
for the coe�cients and |Vcb| are listed in Table III and
Table IV for BGL and CLN, respectively. In the figure
we also show the recent beyond zero-recoil prediction of
Ref. [16] as a green band. Its agreement with the mea-
sured spectra has a p-value of 11%. We also perform fits
to our measured B̄0 and B� shapes separately, with the
corresponding external branching fraction input. The re-
sults are compatible with each other, and the individual
extracted |Vcb| values are listed in Table V. We observe a
discrepancy between the |Vcb| values from the charged-
and neutral-only fits (p = 5%). Correcting for the exist-
ing disagreement between the charged and neutral input
branching fractions from HFLAV [11] and comparing the
full set of BGL coe�cients and |Vcb| we recover a p-value
of 20%.

Additionally, we tested explicitly the impact of the
d’Agostini bias [41] on the reported results. The impact
of this bias on our quoted values of |Vcb| and the form
factor parameters is approximately a factor of 30 smaller
than the quoted uncertainties and we thus do not apply
an additional correction.

We also test the impact of the preliminary lattice re-
sults that constrain the B ! D⇤ form factors beyond
zero recoil of Ref. [16] using two scenarios:

1. Inclusion of hA1
beyond zero recoil:

hX ⌘ hA1
(w) ,

2. Inclusion of the full lattice information:
hX ⌘ hX(w) = {hA1

(w), R1(w), R2(w)},

where we consider the points at w = {1.03, 1.10, 1.17}
and use the provided correlations between the lattice
data points. We translate the lattice data points and
propagate their uncertainty and correlation into pre-
dictions of R1(w) = (w + 1)mBmD

⇤g(w)/f(w) and
R2(w) = (w� r)/(w�1)�F1(w)/(mB(w�1)f(w)) with
r = mD

⇤/mB .
Including lattice points for hA1

beyond zero-recoil re-
sults in a good fit (pBGL = 11%, pCLN = 9%) compatible
with our nominal scenario. Including the full lattice in-
formation results in a poor fit (pBGL = 2%, pCLN = 2%),

FIG. 9. The fitted shapes for both BGL (blue) and CLN (or-
ange) parametrization. Both parametrizations are able to ex-
plain the data, and are compatible with each other. Note that
the BGL (blue) band almost completely overlays the CLN
(orange) band. The green band is the prediction using BGL
coe�cients from lattice QCD calculations in [16].

TABLE III. Fitted BGL121 coe�cients and correlations.

Value Correlation

a0 ⇥ 103 25.98± 1.40 1.00 0.26 �0.23 0.28 �0.31

b0 ⇥ 103 13.11± 0.18 0.26 1.00 �0.01 �0.01 �0.62

b1 ⇥ 103 �7.86± 12.51 �0.23 �0.01 1.00 0.26 �0.47

c1 ⇥ 103 �0.92± 0.97 0.28 �0.01 0.26 1.00 �0.49

|Vcb|⇥ 103 40.55± 0.91 �0.31 �0.62 �0.47 �0.49 1.00

where the disagreement is predominantly generated in
R2(w). The extracted |Vcb| values in the di↵erent lat-
tice scenarios are compatible with each other, as shown
in Table VI. We also investigate the beyond zero-recoil
lattice data for an equivalent number of BGL coe�cients
Na = 3, Nb = 3, Nc = 2 as used in Ref. [16]. We find a
much higher value of |Vcb| = (42.67 ± 0.98) ⇥ 10�3 with
a p-value of 5%. The full details of the fit can be found
in Appendix C.
Using on our measured cos ✓` shapes we determine

the forward-backward asymmetry over the full w phase-
space,

AFB =

R 1
0 d cos` d�/d cos` �

R 0
�1 d cos` d�/d cos`R 1

0 d cos` d�/d cos` +
R 0
�1 d cos` d�/d cos`

, (32)

TABLE IV. Fitted CLN coe�cients and correlations.

Value Correlation

⇢2 1.22± 0.09 1.00 0.58 �0.88 0.37

R1(1) 1.37± 0.08 0.58 1.00 �0.66 �0.03

R2(1) 0.88± 0.07 �0.88 �0.66 1.00 �0.14

|Vcb|⇥ 103 40.11± 0.85 0.37 �0.03 �0.14 1.00

w
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The form factor normalization is constrained at zero-
recoil with hX = hA1

(1) = 0.906 ± 0.013 from Ref. [17]
for our nominal fit scenario. For the BGL form factor
fit, we truncate the series based on the result of a nested
hypothesis test (NHT) [40] with the additional constraint
that the inclusion of additional coe�cients do not result
in correlations of larger than r = 0.95. This leads to the
choice of na = 1, nb = 2, nc = 1 free parameters, with the
constraint for c0 defined in Eq. (12). More details about
the NHT can be found in Appendix B. For the CLN type
parameterization we determine three coe�cients: ⇢2 ,
R1(1), and R2(1).

Both form factor parameterizations are able to describe
the data with p-values of 7% and 6% for BGL and CLN,
respectively, and the extracted |Vcb| values of both deter-
minations are compatible. The fitted shapes are shown
in Fig. 9 (red and blue bands) and the numerical values
for the coe�cients and |Vcb| are listed in Table III and
Table IV for BGL and CLN, respectively. In the figure
we also show the recent beyond zero-recoil prediction of
Ref. [16] as a green band. Its agreement with the mea-
sured spectra has a p-value of 11%. We also perform fits
to our measured B̄0 and B� shapes separately, with the
corresponding external branching fraction input. The re-
sults are compatible with each other, and the individual
extracted |Vcb| values are listed in Table V. We observe a
discrepancy between the |Vcb| values from the charged-
and neutral-only fits (p = 5%). Correcting for the exist-
ing disagreement between the charged and neutral input
branching fractions from HFLAV [11] and comparing the
full set of BGL coe�cients and |Vcb| we recover a p-value
of 20%.

Additionally, we tested explicitly the impact of the
d’Agostini bias [41] on the reported results. The impact
of this bias on our quoted values of |Vcb| and the form
factor parameters is approximately a factor of 30 smaller
than the quoted uncertainties and we thus do not apply
an additional correction.

We also test the impact of the preliminary lattice re-
sults that constrain the B ! D⇤ form factors beyond
zero recoil of Ref. [16] using two scenarios:

1. Inclusion of hA1
beyond zero recoil:

hX ⌘ hA1
(w) ,
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where we consider the points at w = {1.03, 1.10, 1.17}
and use the provided correlations between the lattice
data points. We translate the lattice data points and
propagate their uncertainty and correlation into pre-
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sults in a good fit (pBGL = 11%, pCLN = 9%) compatible
with our nominal scenario. Including the full lattice in-
formation results in a poor fit (pBGL = 2%, pCLN = 2%),

FIG. 9. The fitted shapes for both BGL (blue) and CLN (or-
ange) parametrization. Both parametrizations are able to ex-
plain the data, and are compatible with each other. Note that
the BGL (blue) band almost completely overlays the CLN
(orange) band. The green band is the prediction using BGL
coe�cients from lattice QCD calculations in [16].

TABLE III. Fitted BGL121 coe�cients and correlations.

Value Correlation

a0 ⇥ 103 25.98± 1.40 1.00 0.26 �0.23 0.28 �0.31

b0 ⇥ 103 13.11± 0.18 0.26 1.00 �0.01 �0.01 �0.62

b1 ⇥ 103 �7.86± 12.51 �0.23 �0.01 1.00 0.26 �0.47

c1 ⇥ 103 �0.92± 0.97 0.28 �0.01 0.26 1.00 �0.49

|Vcb|⇥ 103 40.55± 0.91 �0.31 �0.62 �0.47 �0.49 1.00

where the disagreement is predominantly generated in
R2(w). The extracted |Vcb| values in the di↵erent lat-
tice scenarios are compatible with each other, as shown
in Table VI. We also investigate the beyond zero-recoil
lattice data for an equivalent number of BGL coe�cients
Na = 3, Nb = 3, Nc = 2 as used in Ref. [16]. We find a
much higher value of |Vcb| = (42.67 ± 0.98) ⇥ 10�3 with
a p-value of 5%. The full details of the fit can be found
in Appendix C.
Using on our measured cos ✓` shapes we determine

the forward-backward asymmetry over the full w phase-
space,

AFB =

R 1
0 d cos` d�/d cos` �

R 0
�1 d cos` d�/d cos`R 1

0 d cos` d�/d cos` +
R 0
�1 d cos` d�/d cos`

, (32)

TABLE IV. Fitted CLN coe�cients and correlations.

Value Correlation

⇢2 1.22± 0.09 1.00 0.58 �0.88 0.37

R1(1) 1.37± 0.08 0.58 1.00 �0.66 �0.03

R2(1) 0.88± 0.07 �0.88 �0.66 1.00 �0.14

|Vcb|⇥ 103 40.11± 0.85 0.37 �0.03 �0.14 1.00
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More than a decade of  is “lost” :-(B → D(*)ℓν̄ℓ

Table 73: Measurements of the Caprini, Lellouch and Neubert (CLN) [508] form factor param-
eters in B ! D`�⌫` before and after rescaling.

Experiment ⌘EWG(1)|Vcb| [10�3] (rescaled) ⇢2 (rescaled)
⌘EWG(1)|Vcb| [10�3] (published) ⇢2 (published)

ALEPH [497] 36.19± 9.38stat ± 6.83syst 0.814± 0.821stat ± 0.419syst
31.1± 9.9stat ± 8.6syst 0.70± 0.98stat ± 0.50syst

CLEO [517] 44.17± 5.68stat ± 3.46syst 1.270± 0.214stat ± 0.121syst
44.8± 6.1stat ± 3.7syst 1.30± 0.27stat ± 0.14syst

Belle [519] 41.83± 0.60stat ± 1.20syst 1.090± 0.036stat ± 0.019syst
42.29± 1.37 1.09± 0.05

BABAR global fit [509] 42.55± 0.71stat ± 2.06syst 1.194± 0.034stat ± 0.060syst
43.1± 0.8stat ± 2.3syst 1.20± 0.04stat ± 0.07syst

BABAR tagged [518] 42.54± 1.71stat ± 1.26syst 1.200± 0.088stat ± 0.043syst
42.3± 1.9stat ± 1.0syst 1.20± 0.09stat ± 0.04syst

Average 41.53 ± 0.44stat ± 0.88syst 1.129 ± 0.024stat ± 0.023syst
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Figure 51: Illustration of (a) the average and (b) dependence of ⌘EWG(w)|Vcb| on ⇢2. The error
ellipses correspond to ��2 = 1 (CL=39%). Figure (c) is a zoomed in view of the Belle and
BaBar measurements.

where the first error is experimental and the second theoretical. This number is in excellent2708

agreement with |Vcb| obtained from B ! D⇤`�⌫` decays given in Eq. (186).2709

Extraction of |Vcb| based on the BGL form factor2710

A more general expression for the B ! D`�⌫` form factor is again BGL. If experimental2711

data on the w spectrum is available, a BGL fit allows to include available lattice QCD data at2712

154

For  traditionally single form factor 
parametrization (Caprini-Lellouch-Neubert, CLN) 
was used. 

B → D(*)ℓν̄ℓ

Measurements directly determined the 
parameters and quoted these with correlations.

Problem: Theory knowledge advances; today more 
general parametrization are preferred (BGL, …)

Table 70: Measurements of the Caprini, Lellouch and Neubert (CLN) [508] form factor param-
eters in B ! D⇤`�⌫` before and after rescaling. Most analyses (except [503]) measure only
⌘EWF(1)|Vcb|, and ⇢2, so only these two parameters are shown here.

Experiment ⌘EWF(1)|Vcb|[10�3] (rescaled) ⇢2 (rescaled)
⌘EWF(1)|Vcb|[10�3] (published) ⇢2 (published)

ALEPH [497] 31.38± 1.80stat ± 1.24syst 0.488± 0.226stat ± 0.146syst
31.9± 1.8stat ± 1.9syst 0.37± 0.26stat ± 0.14syst

CLEO [501] 40.16± 1.24stat ± 1.54syst 1.363± 0.084stat ± 0.087syst
43.1± 1.3stat ± 1.8syst 1.61± 0.09stat ± 0.21syst

OPAL excl [498] 36.20± 1.58stat ± 1.47syst 1.198± 0.206stat ± 0.153syst
36.8± 1.6stat ± 2.0syst 1.31± 0.21stat ± 0.16syst

OPAL partial reco [498] 37.44± 1.20stat ± 2.32syst 1.090± 0.137stat ± 0.297syst
37.5± 1.2stat ± 2.5syst 1.12± 0.14stat ± 0.29syst

DELPHI partial reco [499] 35.52± 1.41stat ± 2.29syst 1.139± 0.123stat ± 0.382syst
35.5± 1.4stat

+2.3
�2.4syst 1.34± 0.14stat

+0.24
�0.22syst

DELPHI excl [500] 35.87± 1.69stat ± 1.95syst 1.070± 0.141stat ± 0.153syst
39.2± 1.8stat ± 2.3syst 1.32± 0.15stat ± 0.33syst

Belle [502] 34.82± 0.15stat ± 0.55syst 1.106± 0.031stat ± 0.008syst
35.06± 0.15stat ± 0.56syst 1.106± 0.031stat ± 0.007syst

BABAR excl [503] 33.37± 0.29stat ± 0.97syst 1.182± 0.048stat ± 0.029syst
34.7± 0.3stat ± 1.1syst 1.18± 0.05stat ± 0.03syst

BABAR D⇤0 [507] 34.55± 0.58stat ± 1.06syst 1.124± 0.058stat ± 0.053syst
35.9± 0.6stat ± 1.4syst 1.16± 0.06stat ± 0.08syst

BABAR global fit [509] 35.45± 0.20stat ± 1.08syst 1.171± 0.019stat ± 0.060syst
35.7± 0.2stat ± 1.2syst 1.21± 0.02stat ± 0.07syst

Average 35.00 ± 0.11stat ± 0.34syst 1.121 ± 0.014stat ± 0.019syst

and the correlation coefficients are2659

⇢⌘EWF(1)|Vcb|,⇢2 = 0.337 , (179)
⇢⌘EWF(1)|Vcb|,R1(1) = �0.097 , (180)
⇢⌘EWF(1)|Vcb|,R2(1) = �0.085 , (181)

⇢⇢2,R1(1) = 0.565 , (182)
⇢⇢2,R2(1) = �0.824 , (183)

⇢R1(1),R2(1) = �0.714 . (184)

The uncertainties and correlations quoted here include both statistical and systematic contri-2660

butions. The �2 of the fit is 42.2 for 23 degrees of freedom, which corresponds to a confidence2661

level of 0.9%. The largest contribution to the �2 of the average is due to the ALEPH and2662

CLEO measurements [497,501]. An illustration of this fit result is given in Fig. 49.2663

To convert this result into |Vcb|, theory input for the form factor normalization is required.2664

150

Old measurements cannot be updated 
the underlying distributions were not 
provided but only the result of the fit.


Obviously we should avoid this in the 
future. 

Nucl.Phys. B530 (1998) 153-181
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minimisation including all correlations against the mea-
sured bin totals from Belle. Note that throughout this
section we assume no lepton flavour universality (LFU)
violation between the light ` = µ and ` = e modes.

29

Fig. 9 Results for separate fits to each dataset (left) and joint fit of all data (right). On the left we compare the BaBar result
(gray), the Belle result from the untagged dataset (green), and the lattice-QCD result coming from our synthetic data (red).
To allow for an straightforward comparison of lattice and experimental data, the data points and bands have been normalized
with the central value of |Vcb| as obtained in our joint fit, and taking into account the Coulomb factor corresponding to each
case. All results agree within ⇡ 2� over the whole kinematic range. There is tension between the slope predicted by the lattice
calculation and that of the experimental data. Since the lattice-QCD slope is well determined, correlations in the joint fit cause
the central lattice-QCD values to fall slightly below the experimental values.

is currently dominated by the Belle and lattice-QCD
data, the addition of extra coe�cients in the BaBar ex-
pansion does not change our final results for |Vcb| and
R(D⇤) in a meaningful way. Hence, for the our final
results quoted in this work, the synthetic data points
from Ref. [19] are generated without adding extra co-
e�cients.

In the Belle and BaBar analyses the number of co-
e�cients in the BGL z expansion is limited to exclude
those that cannot be properly determined by their data,
and thus avoiding apparent unitarity violations. This
procedure, however, does not account for possible trun-
cation errors. Repeating the fits in Table 12 without
the c3 and d2 coe�cients yields similar results with re-
duced errors and much smaller sums for the unitarity
constraints.

5.3 Determination of R(D⇤
)

From the fit results in Table 12 we can calculate R(D⇤)
through direct integration of the di↵erential decay rate
over the whole kinematic range. In Fig. 10, we show
the di↵erential decay rate as a function of the recoil
parameter extracted using lattice-only data (red and
brown curves), compared with that of our joint fit. The
curves below (maroon and blue) show the di↵erential
decay rate for the ⌧ case. Our final result for R(D⇤)

from our purely lattice-QCD calculation is

R(D⇤)Lat = 0.265± 0.013. (77)

If we assume that new physics e↵ects are visible only
at large lepton masses (i.e., the ⌧), we can use our joint
fit of the lattice and light-lepton experimental data to
obtain a more precise SM value of R(D⇤). We note that
in our joint fit, the curve corresponding to light leptons
is determined mainly from experiment, and the one cor-
responding to the ⌧ comes mainly from the lattice data.
In that case, we obtain

R(D⇤)Lat+Exp = 0.2484(13), (78)

where the Coulomb factor is included. Its removal does
not change significantly neither the central value nor
the error. We emphasize, however, that Eq. (77) is the
SM prediction, relying only on lattice QCD, while Eq.
(78) is also based on the shape information coming from
experimental data. In any case, the correlated di↵erence
between the two results is 1.3�. Our values also agree
with previous theoretical determinations [20, 21, 118–
120]. We note that more recent experimental measure-
ments have found R(D⇤) to be consistently smaller than
before, hence reducing the tension between theory and
experiment [1]. The current status of the R(D)-R(D⇤)
determinations is summarized in Fig. 11.

5

The emergence of beyond zero-recoil lattice: 

Very exciting times:  

After more than 10 years in the making, we have beyond zero recoil 
LQCD predictions for   B → D*ℓν̄ℓ

Three groups: One published, One freshly on arxiv, One preliminary :

HPQCD

( )
1A
h w

( )Vh w JLQCDFNAL/MILC

A. Bazavov et al. [FNAL/MILC]      [Eur. Phys. J. C 82, 1141 (2022), arXiv:2105.14019]

Tension with measured shapes …

J. Harrison & T.H. Davies [HPQCD]      [arXiv:2304.03137 [hep-lat]]
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BGL is much better, model independent

So is it ok to just present results with Boyd Grinstein Lebed (BGL) ?


BGL looks great: 


- it removes the relation between slope and curvature on the leading form factor; 
data can pull it.


- Slop and curvature of the form factor ratios  are not constrained, data can 
pull it. 

R1/2

4

and is small in the physical region. Here t ⌘ q
2
,

t± ⌘ (mB ± mD
⇤)

2
and t0 = t+ �

p
t+(t+ � t�). We

adopt the Blaschke factors, Pi(z), corresponding to re-
moval of the Bc poles of the BD

⇤
system, and the outer

functions, �i(z), from Refs. [3, 12]. The BGL coe�cients

in Eq. 4 satisfy the relations
P

n |a
i
n|

2  1, known as uni-
tarity constraints. The CLN [10] formalism makes similar
expansions up to cubic terms, but imposes heavy-quark
symmetry relations and QCD sum rules to relate the ex-
pansion parameters. The resultant forms are expressed
in terms of a reduced set of a slope, ⇢

2
D

⇤ , and two nor-
malization parameters, R1,2(1).

In this Letter, employing a data sample of 471⇥10
6
BB

pairs [13] produced at the ⌥(4S) resonance and collected
by the BABAR detector [14, 15], a full four-dimensional
analysis of the B ! D

⇤
`
�
⌫` decay rate corresponding

to Eq. 1 is reported. One of the B mesons, referred
to as the tag-side B, is fully reconstructed via hadronic
decays, allowing for the missing neutrino 4-momentum,
pmiss, to be explicitly reconstructed on the signal-side B,
since the initial e

±
4-momenta are known. The hadronic

tagging algorithm uses charm-meson seeds (D
(⇤)

, J/ )
combined with ancillary charmless light hadrons (⇡/K),
and is the same as in several previous BABAR analy-
ses [14, 16, 17]. From the remaining particles in the event

after the tag-B reconstruction, aD
0
meson reconstructed

via one its three cleanest decay modes, K
�
⇡
+
, K

�
⇡
�
⇡
0

or K
�
⇡
+
⇡
�
⇡
+
, is combined with a ⇡

0
or ⇡

+
, to form a

D
⇤0

or D
⇤+

, respectively. For each D
⇤
candidate, the re-

constructed invariant mass of the D
0
and the di↵erence

of the reconstructed masses, �m ⌘ (mD
⇤ � mD), are

required to be within four standard deviations of the ex-
pected resolution from their nominal values, at this stage.
The D

⇤
is combined with a charged lepton ` 2 {e, µ},

with the laboratory momentum of the lepton required to
be greater than 0.2 GeV and 0.3 GeV for e and µ, re-
spectively. The six D

⇤
decay modes along with the two

charged lepton species comprise twelve signal channels
that are processed as independent data samples. No ad-
ditional tracks are allowed in the event. The entire event
topology, e

+
e
� ! ⌥(4S) ! BtagBsig(! D

⇤
`
�
⌫`) is con-

sidered in a kinematic fit including constraints on the
beam spot, relevant secondary decay vertices and masses

of the reconstructed Btag, Bsig, D
(⇤)

and the missing neu-

trino. The �
2
-probability from this highly constrained fit

is used as the main discriminant against background. To
reject candidates with additional neutral energy deposits,
Eextra is defined as the sum of the energies of the good
quality photons not utilized in the event reconstruction.
The variable Eextra is required to be less than 0.4 GeV

to 0.6 GeV, depending on the D
(⇤)

modes. Only can-
didates satisfying q

2 2 [0.2, 10.2] GeV
2
are retained. In

events with multiple selected candidates, only the candi-
date with the highest �

2
-probability from the kinematic

fit is retained.
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FIG. 1. Comparisons between data and generic BB simula-
tion in the discriminating variables (a) U and (b) Eextra. For
each plot, selections in all other variables have been applied.

After all selections, the overall background level is
estimated to be ⇠ 2%, using a simulation of generic
⌥(4S) ! BB events, where both B mesons decay to any
allowed final state. All selected events enter the four-
dimensional angular fit; the small remnant background is
treated as a source of systematic uncertainty. Figure 1a
shows the comparison between data and simulation in the
variable U = Emiss � |~pmiss|, where the resolution in the
neutrino reconstruction has been weighted in the signal
part of this simulation to match that in the data. Here
Emiss and ~pmiss correspond to the missing neutrino en-
ergy and momentum, respectively. Figure 1b shows the
comparison in the discriminating variable Eextra. The
e�ciency in Eextra in the Eextra ! 0 signal region does
not a↵ect the angular analysis, so that an exact agree-
ment is not required. The generic BB simulation agrees
with the data in all kinematic-variable distributions in
the sideband regions, validating its use to estimate the
background in the signal region. The final requirement is
|U |  90 MeV. The total number of selected candidates
at this stage is 6112, with the estimated signal yield being
around 5932.
In addition to the generic BB simulation sample used

for the data analysis where both B-mesons are decayed
generically, a separate category of BB simulation is
employed where the Btag is decayed generically, but

Bsig ! D
⇤
(! D⇡)`

�
⌫` is decayed uniformly in dq

2
d⌦ at

the generator level. This latter sample is used to correct
for detector acceptance e↵ects in the fit to Eq. 1 employ-
ing numeric computation of the normalization integrals
as described in Ref. [18]. The simulation undergoes the
same reconstruction and selection steps as the data sam-
ple. The uniformly generated simulation weighted by the
fit results match the data in all distributions, as discussed
later.
Unbinned maximum-likelihood fits to the BABAR data

are performed employing the four-dimensional decay rate
given by Eq. 1. The likelihood calculation treats all
events in the data sample as signal and the small residual
background is accounted for by subtracting from the log
likelihood a contribution estimated from generic BB sim-

5

ulation. The fits are performed in two variants, for each
of the BGL and CLN parameterizations. For the nominal
BABAR-only variant, the negative log likelihood (NLL) is
of the non-extended type, implying that the overall nor-
malization factor is not imposed. This fit is used to ex-
tract the three form factors in a fashion insulated from
systematic uncertainties related to the normalization, in
particular with the estimation of the Btag yield.

To extract |Vcb|, a second version of the fit is per-
formed, where the integrated rate � is converted to a
branching fraction, B, as � = B/⌧B , where ⌧B is the
B-meson lifetime. The latest HFLAV [19] values of B
and ⌧B , for B

0
and B

�
mesons, are employed as addi-

tional Gaussian constraints to the BABAR-only NLL, and
the entire fit is repeated. Two other constraints are em-
ployed. First, a lattice calculation from the Fermilab
Lattice and MILC collaborations [20] gives the value of

hA1(1) = (mB+mD
⇤)A1(q

2
max)/(2

p
mBmD

⇤) at the zero

recoil point, q
2
max ⌘ (mB�mD

⇤)
2
. Second, at the zero re-

coil point, the relation F1(q
2
max) = (mB�mD

⇤)f(q
2
max) is

used to express a
F1
0 in terms of the remaining BGL coe�-

cients in f and F1. Therefore, a
F1
0 is not a free parameter

in the fit, but is derived from the remaining parameters.
The small isospin dependence of these constraints, aris-
ing from the di↵erences m

B
+ �m

B
0 and m

D
⇤0 �m

D
⇤+ ,

is ignored in the calculation.
Given the statistical power of our data, we truncate

the BGL expansion at N = 1 to avoid the violation of
unitarity constraints due to poorly determined param-
eters. To ensure that a global minimum for the NLL
is reached, 1000 instances of the BGL fits are executed,
with uniform sampling on [-1,+1] for the starting values
of the an coe�cients. Among convergent fits, a unique
minimum NLL is always found, up to small variations in
the least significant digits in the fit parameters.

Many sources of systematic uncertainties cancel in
this analysis, since no normalization is required from
the BABAR data sample. Tracking e�ciences in
simulation show no significant dependence on q

2
or

{cos ✓`, cos ✓V ,�}. To account for the resolutions in the
reconstructed kinematic variables, the normalization of
the probablity density function in the fit is performed
using reconstructed variables from the simulation. The
dominant systematic uncertainty comes from the rem-
nant background that can pollute the angular distribu-
tions. To estimate its e↵ect on the fit results, the fit pro-
cedure is repeated excluding the background subtraction
and the di↵erence in the results is taken as the systematic
uncertainty.

Table I summarizes the main results from the BGL
fits, including |Vcb|. Several checks are performed to
ensure stability of the results. Cross-checks are per-
formed via separate fits to the B

0
and B

�
isospin modes

that have charged and neutral pions for the soft pion
in D

⇤ ! D⇡ [21]. Cross-checks are also performed

af
0 ⇥ 102 af

1 ⇥ 102 a
F1
1 ⇥ 102 ag

0 ⇥ 102 ag
1 ⇥ 102 |Vcb|⇥ 103

1.29 1.63 0.03 2.74 8.33 38.36
±0.03 ±1.00 ±0.11 ±0.11 ±6.67 ±0.90

TABLE I. The N = 1 BGL expansion results of this analysis,
including systematic uncertainties.

⇢2D⇤ R1(1) R2(1) |Vcb|⇥ 103

0.96± 0.08 1.29± 0.04 0.99± 0.04 38.40± 0.84

TABLE II. The CLN fit results from this analysis, including
systematic uncertainties.

for separate fits to the two lepton species. Results are
found to be compatible within the statistical uncertain-
ties and thus no additional uncertainty is quoted from
these checks. The values of |Vcb|⇥10

3
, including only sta-

tistical uncertainties, for the e, µ, B
0
, B

�
separated fits

are 38.59±1.15, 38.24±1.05, 38.03±1.05 and 38.68±1.16,
respectively. The use of t0 = t� in the BGL expansion,
as in Refs. [3–5] also gives results consistent with Table I.
Table II reports the corresponding results from the CLN
fits. The value of |Vcb| is consistent between the BGL
and CLN based fits.

Figure 2 shows the comparisons of the BABAR
BGL/CLN results with the CLN world average (CLN-
WA) [19] as well as light-cone sum rules (LCSR) at the
maximum recoil from Ref. [22]. Phenomenologically, the
most important feature in Fig. 2 is the discrepancy be-
tween CLN-WA and the BABAR fits, while within BABAR,
both CLN and BGL parameterizations yield comparable
results. Numerically, the p-value of the consistency check
in the three CLN fit parameters, between CLN-BABAR
and CLN-WA is 0.0017.

For |Vcb|, the result obtained here is well below the
value determined from inclusive decays. This is in con-
trast with results from several recent analyses using
the BGL parameterization based on unpublished Belle
data [3–6, 23], where larger values, close to the inclusive
result, were typically obtained.

Figure 3 shows the two-dimensional scatter plots in
cos ✓V and � in three bins of cos ✓` and integrated over
the q

2
spectrum, between the data (top row) and sim-

ulation (bottom row) after acceptance and reconstruc-
tion e↵ects, weighted by the results of the BGL fit. The
binned �

2
di↵erences between the data and weighted sim-

ulation referring to Fig. 3 are (a) 103, (b) 89 and (c) 96,
evaluated over 100 bins. The corresponding values for
the four one-dimensional projections evaluated over 20
bins are 22, 23, 26 and 18, for q

2
, cos ✓`, cos ✓V and �,

respectively. Within uncertainties, the weighted simula-
tion consistently matches the data.

The di↵erential rate in Eq. 1 holds under the assump-

Beautiful unbinned 4D fit (!) from BaBar  [Phys. Rev. Lett. 123, 091801 (2019)]
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Truncation Order

2

II. DIFFERENTIAL DECAY RATE AND BGL PARAMETERIZATION

Using the notation in Ref. [12], the B̄ ! D
⇤ matrix elements are defined as

hD
⇤(", p0)|c̄�µ

b|B̄(p)i = ig✏
µ⌫↵�

"
⇤
⌫p↵p

0
� , (5)

hD
⇤(", p0)|c̄�µ

�
5
b|B̄(p)i = f"

⇤µ + ("⇤ · p)[a+(p+ p
0)µ + a�(p � p

0)µ], (6)

where "
µ is the polarization tensor of the vector D⇤ meson. In the limit when the final-state leptons are massless,

the full di↵erential decay rate for B̄ ! D
⇤
`⌫ is

d�(B ! D
⇤
`⌫)

dw d cos ✓` d cos ✓v d�
=

3⌘2ewG
2
F |Vcb|

2

1024⇡4
|pD⇤ |q

2
r

✓
(1 � cos ✓`)

2 sin2 ✓vH
2
+ + (1 + cos ✓`)

2 sin2 ✓vH
2
�

+ 4 sin2 ✓` cos
2
✓vH

2
0 � 2 sin2 ✓` sin

2
✓v cos 2�H+H�

� 4 sin ✓`(1 � cos ✓`) sin ✓v cos ✓v cos�H+H0

+ 4 sin ✓`(1 + cos ✓`) sin ✓v cos ✓v cos�H�H0

◆
, (7)

where qµ is the 4-momentum of the lepton system, r ⌘ mD⇤/mB , and |pD⇤ | is the magnitude of theD⇤ 3-momentum
in the rest frame of the B̄:

w ⌘
m

2
B +m

2
D⇤ � q

2

2mBmD⇤
, q

2 = m
2
B +m

2
D⇤ � 2mBmD⇤w, |pD⇤ | = mD⇤

p
w2 � 1. (8)

Here, H+, H�, and H0 are form factors associated with each of the three helicity states of the D
⇤, all of which are

functions of q2. Also, ✓` is the angle between the anti-neutrino and the direction antiparallel to the D
⇤ in the rest

frame of the leptonic system, ✓v is the angle between the D
⇤ momentum and its daughter D meson, and � is the

angle between the planes defined by the the leptonic system and the D
⇤ system. The factor ⌘ew incorporates the

leading electroweak corrections [17], ⌘ew = 1 + ↵/⇡ ln(MZ/mB) ' 1.0066. In terms of the form factors in Eqs. (5)
and (6),

H+ = f � mB |pD⇤ |g, (9)

H� = f +mB |pD⇤ |g, (10)

H0 =
1

mD⇤
p

q2


2m2

B |pD⇤ |
2
a+ �

1

2

�
q
2

� m
2
B +m

2
D⇤

�
f

�
⌘

F1p
q2

. (11)

A detailed discussion about the BGL method for parameterizing the form factors f , g, and F1 can be found in
Ref. [12]. The final result gives a parametrization of each form factor in terms of N + 1 coe�cients:

g(z) =
1

Pg(z)�g(z)

NX

n=0

anz
n
, f(z) =

1

Pf (z)�f (z)

NX

n=0

bnz
n
, F1(z) =

1

PF1(z)�F1(z)

NX

n=0

cnz
n
, (12)

where the conformal variable z is defined as

z ⌘

p
w + 1 �

p
2a

p
w + 1 +

p
2a

. (13)

Here, a = 1 can be chosen such that z = 0 corresponds to zero recoil, and the coe�cients an, bn, and cn are
bounded by unitarity [10],

NX

n=0

|an|
2

 1, and
NX

n=0

�
|bn|

2 + |cn|
2
�

 1, (14)

From Eq. (11), F1(0) = (mB � mD⇤)f(0); hence b0 and c0 are not independent, i.e.,

c0 =

✓
(mB � mD⇤)�F1(0)

�f (0)

◆
b0. (15)

Model independence is a step forward, but choices have to be made here as well..

Truncate too soon:


- Model dependence in extracted result for ?


Truncate too late:


- Unnecessarily increase variance on ?

|Vcb |

|Vcb |

Is there an ideal truncation order?

One Problem you face as an experimentalist: where do you truncate?

What about additional constraints?
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Nested Hypothesis Tests or Saturation Constraints

BGLna,nb,nc

BGLna+1,nb,nc

BGLna,nb+1,nc

BGLna,nb,nc+1

Challenge nested fits

Z. Ligeti, D. Robinson, M. Papucci, FB 
[arXiv:1902.09553, PRD100,013005 (2019)] 

Gambino, Jung, Schacht 
[arXiv:1905.08209, PLB] 

Use a nested hypothesis test (NHT)

to determine optimal truncation order

Constrain contributions

from higher order coefficients


using unitarity bounds

N

∑
n=0

|an |2 ≤ 1
N

∑
n=0

( |bn |2 + |cn |2 ) ≤ 1

N

∑
n=0

|an |2

χ2
penalty

1

χ2 → χ2 + χ2
penalty

Test statistics & Decision boundary 

Δχ2 = χ2
N − χ2

N+1

Distributed like a 𝝌2-distribution with 1 dof

(Wilk’s theorem)

Δχ2 > 1

e.g.

?



# 9

Nesting Procedure

Steps:

1

2

Carry out nested fits with one 
parameter added

Accept descendant over 
parent fit, if ∆𝝌2 > 1

Repeat 1 and 2 until you

find stationary points

If multiple stationary points 
remain, choose the one with 
smallest N, then smallest 𝝌2

3

4

BGLna+1,nb,nc

BGLna+2,nb,nc

BGLna+1,nb+1,nc

BGLna+1,nb,nc+1∆𝝌2 < 1
stationary

Reject scenarios that 
produce strong correlations


(= blind directions) 
5
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Nesting Procedure
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Toy study to illustrate possible bias

6
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FIG. 3. The pull constructed from a large ensemble of pseudo-experiments using 3rd order terms of the 1-times (left plot) and

10-times scenario (right plot) described in the text. The pull of the fits selected by the nested hypothesis prescription (black)

show no bias or under-coverage of uncertainties. Also shown in red is the pull from a BGL122 fit, showing a large bias on the

value of |Vcb|. Mean (µ) and standard deviation (�) from normal distributions fitted to the ensembles are also provided.

data sets. These were generated using the BGL333

parametrization, i.e., with nine coe�cients. The six lower
order coe�cients {ã0,1, b̃0,1, c̃1,2} were chosen to be iden-
tical to the BGL222 fit results of Fig. I. The 3rd order
terms {ã2, b̃2, c̃3} were chosen according to two di↵erent
scenarios: Either 1 or 10 times the size of the {ã1, b̃1, c̃2}
coe�cients in the BGL222 fit, as shown in Table III. We
call these the ‘1-times’ and ‘10-times’ scenarios, respec-
tively. Ensembles were constructed as follows. First, pre-
dictions for the 40 bins of the tagged measurement [1]
were produced. Ensembles of pseudo-data sets were then
generated using the full experimental covariance, assum-
ing Gaussian errors, and then each pseudo-data set was
fit according to the nested hypothesis test prescription.

The frequency with which particular BGLijk

parametrizations are selected are shown in Table IV, for
both the 1- and 10-times scenarios. For each selected fit
hypothesis, the recovered value, |Vcb|rec, and the asso-
ciated uncertainty, �, may then be used to construct a
pull, i.e., the normalized di↵erence (|Vcb|rec�|Vcb|true)/�,
where |Vcb|true is the ‘true’ value used to construct the
ensembles. If a fit or a procedure is unbiased, the
corresponding pull distribution should follow a standard
normal distribution (mean of zero, standard deviation
of unity). In Figure 3 the pull distributions for both the
1- and 10-times scenarios are shown and compared to

Parameter Value ⇥ 10
2

Value ⇥ 10
2

ã2 2.6954 26.954

b̃2 �0.2040 �2.040

c̃3 0.5350 5.350

TABLE III. Fit coe�cients used to construct the ensembles of

toy experiments. The third order terms {ã2, b̃2, c̃3} are taken

either as 1 or 10 times the second order terms {ã1, b̃1, c̃2} in

the BGL222 fit shown in Fig. III.

that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for |Vcb| in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests the BGL122 fits have mean
�2 values of 41.0 and 56.6, respectively (with 35 degrees
of freedom). For the 1-times scenario, this produces an
acceptable fit probability on average. Nonetheless, the
recovered value of |Vcb| is biased by about 1.3�.

VI. CONCLUSIONS

We studied the di↵erences of the determinations of
|Vcb| from exclusive semileptonic B ! D⇤`⌫ decays, de-
pending on the truncation order of the BGL parametriza-
tion of the form factors used to fit the measured dif-
ferential decay distributions. Since the 2018 untagged
Belle measurement [2] used a five-parameter BGL fit,
Refs. [14, 20] used a six-parameter fit, and Refs. [13, 22]
used an eight-parameter one, we explored di↵erences be-
tween the five, six, seven, and eight parameter fits.
We proposed using nested hypothesis tests to deter-

mine the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including
additional fit parameters only improves �2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2� di↵erences
occur, including in the values of |Vcb|. This indicates that
more precise measurements are needed to resolve tensions
between various |Vcb| determinations, and that the trun-
cation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental mea-

surements, more complete fit studies inside the experi-
mental analysis frameworks, as well as better understand-
ing of the composition of the inclusive semileptonic rate
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FIG. 3. The pull constructed from a large ensemble of pseudo-experiments using 3rd order terms of the 1-times (left plot) and
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show no bias or under-coverage of uncertainties. Also shown in red is the pull from a BGL122 fit, showing a large bias on the

value of |Vcb|. Mean (µ) and standard deviation (�) from normal distributions fitted to the ensembles are also provided.

data sets. These were generated using the BGL333

parametrization, i.e., with nine coe�cients. The six lower
order coe�cients {ã0,1, b̃0,1, c̃1,2} were chosen to be iden-
tical to the BGL222 fit results of Fig. I. The 3rd order
terms {ã2, b̃2, c̃3} were chosen according to two di↵erent
scenarios: Either 1 or 10 times the size of the {ã1, b̃1, c̃2}
coe�cients in the BGL222 fit, as shown in Table III. We
call these the ‘1-times’ and ‘10-times’ scenarios, respec-
tively. Ensembles were constructed as follows. First, pre-
dictions for the 40 bins of the tagged measurement [1]
were produced. Ensembles of pseudo-data sets were then
generated using the full experimental covariance, assum-
ing Gaussian errors, and then each pseudo-data set was
fit according to the nested hypothesis test prescription.

The frequency with which particular BGLijk

parametrizations are selected are shown in Table IV, for
both the 1- and 10-times scenarios. For each selected fit
hypothesis, the recovered value, |Vcb|rec, and the asso-
ciated uncertainty, �, may then be used to construct a
pull, i.e., the normalized di↵erence (|Vcb|rec�|Vcb|true)/�,
where |Vcb|true is the ‘true’ value used to construct the
ensembles. If a fit or a procedure is unbiased, the
corresponding pull distribution should follow a standard
normal distribution (mean of zero, standard deviation
of unity). In Figure 3 the pull distributions for both the
1- and 10-times scenarios are shown and compared to

Parameter Value ⇥ 10
2

Value ⇥ 10
2

ã2 2.6954 26.954

b̃2 �0.2040 �2.040

c̃3 0.5350 5.350

TABLE III. Fit coe�cients used to construct the ensembles of

toy experiments. The third order terms {ã2, b̃2, c̃3} are taken

either as 1 or 10 times the second order terms {ã1, b̃1, c̃2} in

the BGL222 fit shown in Fig. III.

that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for |Vcb| in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests the BGL122 fits have mean
�2 values of 41.0 and 56.6, respectively (with 35 degrees
of freedom). For the 1-times scenario, this produces an
acceptable fit probability on average. Nonetheless, the
recovered value of |Vcb| is biased by about 1.3�.

VI. CONCLUSIONS

We studied the di↵erences of the determinations of
|Vcb| from exclusive semileptonic B ! D⇤`⌫ decays, de-
pending on the truncation order of the BGL parametriza-
tion of the form factors used to fit the measured dif-
ferential decay distributions. Since the 2018 untagged
Belle measurement [2] used a five-parameter BGL fit,
Refs. [14, 20] used a six-parameter fit, and Refs. [13, 22]
used an eight-parameter one, we explored di↵erences be-
tween the five, six, seven, and eight parameter fits.
We proposed using nested hypothesis tests to deter-

mine the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including
additional fit parameters only improves �2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2� di↵erences
occur, including in the values of |Vcb|. This indicates that
more precise measurements are needed to resolve tensions
between various |Vcb| determinations, and that the trun-
cation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental mea-

surements, more complete fit studies inside the experi-
mental analysis frameworks, as well as better understand-
ing of the composition of the inclusive semileptonic rate
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FIG. 3. The pull constructed from a large ensemble of pseudo-experiments using 3rd order terms of the 1-times (left plot) and

10-times scenario (right plot) described in the text. The pull of the fits selected by the nested hypothesis prescription (black)

show no bias or under-coverage of uncertainties. Also shown in red is the pull from a BGL122 fit, showing a large bias on the

value of |Vcb|. Mean (µ) and standard deviation (�) from normal distributions fitted to the ensembles are also provided.

data sets. These were generated using the BGL333

parametrization, i.e., with nine coe�cients. The six lower
order coe�cients {ã0,1, b̃0,1, c̃1,2} were chosen to be iden-
tical to the BGL222 fit results of Fig. I. The 3rd order
terms {ã2, b̃2, c̃3} were chosen according to two di↵erent
scenarios: Either 1 or 10 times the size of the {ã1, b̃1, c̃2}
coe�cients in the BGL222 fit, as shown in Table III. We
call these the ‘1-times’ and ‘10-times’ scenarios, respec-
tively. Ensembles were constructed as follows. First, pre-
dictions for the 40 bins of the tagged measurement [1]
were produced. Ensembles of pseudo-data sets were then
generated using the full experimental covariance, assum-
ing Gaussian errors, and then each pseudo-data set was
fit according to the nested hypothesis test prescription.

The frequency with which particular BGLijk

parametrizations are selected are shown in Table IV, for
both the 1- and 10-times scenarios. For each selected fit
hypothesis, the recovered value, |Vcb|rec, and the asso-
ciated uncertainty, �, may then be used to construct a
pull, i.e., the normalized di↵erence (|Vcb|rec�|Vcb|true)/�,
where |Vcb|true is the ‘true’ value used to construct the
ensembles. If a fit or a procedure is unbiased, the
corresponding pull distribution should follow a standard
normal distribution (mean of zero, standard deviation
of unity). In Figure 3 the pull distributions for both the
1- and 10-times scenarios are shown and compared to

Parameter Value ⇥ 10
2

Value ⇥ 10
2

ã2 2.6954 26.954

b̃2 �0.2040 �2.040

c̃3 0.5350 5.350

TABLE III. Fit coe�cients used to construct the ensembles of

toy experiments. The third order terms {ã2, b̃2, c̃3} are taken

either as 1 or 10 times the second order terms {ã1, b̃1, c̃2} in

the BGL222 fit shown in Fig. III.

that of the BGL122 parametrization. One sees that the
nested hypothesis test proposed in this paper selects fit
hypotheses that provide unbiased values for |Vcb| in both
scenarios. However, the BGL122 fit shows significant
biases. In the ensemble tests the BGL122 fits have mean
�2 values of 41.0 and 56.6, respectively (with 35 degrees
of freedom). For the 1-times scenario, this produces an
acceptable fit probability on average. Nonetheless, the
recovered value of |Vcb| is biased by about 1.3�.

VI. CONCLUSIONS

We studied the di↵erences of the determinations of
|Vcb| from exclusive semileptonic B ! D⇤`⌫ decays, de-
pending on the truncation order of the BGL parametriza-
tion of the form factors used to fit the measured dif-
ferential decay distributions. Since the 2018 untagged
Belle measurement [2] used a five-parameter BGL fit,
Refs. [14, 20] used a six-parameter fit, and Refs. [13, 22]
used an eight-parameter one, we explored di↵erences be-
tween the five, six, seven, and eight parameter fits.
We proposed using nested hypothesis tests to deter-

mine the optimal number of fit parameters. For the 2017
Belle analysis [1], six parameters are preferred. Including
additional fit parameters only improves �2 marginally.
Comparing the result of the BGL122 fit used in the 2018
untagged Belle analysis [2] to the corresponding fit to the
2017 tagged Belle measurement [1], up to 2� di↵erences
occur, including in the values of |Vcb|. This indicates that
more precise measurements are needed to resolve tensions
between various |Vcb| determinations, and that the trun-
cation order of the BGL expansion of the form factors
has to be chosen with care, based on data.
We look forward to more precise experimental mea-

surements, more complete fit studies inside the experi-
mental analysis frameworks, as well as better understand-
ing of the composition of the inclusive semileptonic rate
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Nested 
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Test
Nested 
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of Pulls

7

BGL122 BGL212 BGL221 BGL222 BGL223 BGL232 BGL322 BGL233 BGL323 BGL332 BGL333

1-times 6% 0% 37% 27% 6% 6% 11% 0% 2% 4% 0.4%

10-times 0% 0% 8% 38% 14% 8% 16% 3% 4% 8% 1%

TABLE IV. The frequency of the selected hypotheses for ensembles created with the two scenarios for the higher order terms,

as estimated with an ensemble size of 250 pseudo-data sets.

as a sum of exclusive channels [33, 34]. Improved lattice
QCD results, including finalizing the form factor calcula-
tions in the full w range [31, 32] are also expected to be
forthcoming. These should all contribute to a better un-
derstanding of the determinations of |Vcb| from exclusive
and inclusive semileptonic decays, which is important for
CKM fits, new physics sensitivity, ✏K , and rare decays.
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Talk Overview

Measuring |Vub| and |Vcb|
* Decays don’t happen at quark level, non-perturbative physics make things
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The form factor normalization is constrained at zero-
recoil with hX = hA1

(1) = 0.906 ± 0.013 from Ref. [17]
for our nominal fit scenario. For the BGL form factor
fit, we truncate the series based on the result of a nested
hypothesis test (NHT) [40] with the additional constraint
that the inclusion of additional coe�cients do not result
in correlations of larger than r = 0.95. This leads to the
choice of na = 1, nb = 2, nc = 1 free parameters, with the
constraint for c0 defined in Eq. (12). More details about
the NHT can be found in Appendix B. For the CLN type
parameterization we determine three coe�cients: ⇢2 ,
R1(1), and R2(1).

Both form factor parameterizations are able to describe
the data with p-values of 7% and 6% for BGL and CLN,
respectively, and the extracted |Vcb| values of both deter-
minations are compatible. The fitted shapes are shown
in Fig. 9 (red and blue bands) and the numerical values
for the coe�cients and |Vcb| are listed in Table III and
Table IV for BGL and CLN, respectively. In the figure
we also show the recent beyond zero-recoil prediction of
Ref. [16] as a green band. Its agreement with the mea-
sured spectra has a p-value of 11%. We also perform fits
to our measured B̄0 and B� shapes separately, with the
corresponding external branching fraction input. The re-
sults are compatible with each other, and the individual
extracted |Vcb| values are listed in Table V. We observe a
discrepancy between the |Vcb| values from the charged-
and neutral-only fits (p = 5%). Correcting for the exist-
ing disagreement between the charged and neutral input
branching fractions from HFLAV [11] and comparing the
full set of BGL coe�cients and |Vcb| we recover a p-value
of 20%.

Additionally, we tested explicitly the impact of the
d’Agostini bias [41] on the reported results. The impact
of this bias on our quoted values of |Vcb| and the form
factor parameters is approximately a factor of 30 smaller
than the quoted uncertainties and we thus do not apply
an additional correction.

We also test the impact of the preliminary lattice re-
sults that constrain the B ! D⇤ form factors beyond
zero recoil of Ref. [16] using two scenarios:

1. Inclusion of hA1
beyond zero recoil:

hX ⌘ hA1
(w) ,

2. Inclusion of the full lattice information:
hX ⌘ hX(w) = {hA1

(w), R1(w), R2(w)},

where we consider the points at w = {1.03, 1.10, 1.17}
and use the provided correlations between the lattice
data points. We translate the lattice data points and
propagate their uncertainty and correlation into pre-
dictions of R1(w) = (w + 1)mBmD

⇤g(w)/f(w) and
R2(w) = (w� r)/(w�1)�F1(w)/(mB(w�1)f(w)) with
r = mD

⇤/mB .
Including lattice points for hA1

beyond zero-recoil re-
sults in a good fit (pBGL = 11%, pCLN = 9%) compatible
with our nominal scenario. Including the full lattice in-
formation results in a poor fit (pBGL = 2%, pCLN = 2%),

FIG. 9. The fitted shapes for both BGL (blue) and CLN (or-
ange) parametrization. Both parametrizations are able to ex-
plain the data, and are compatible with each other. Note that
the BGL (blue) band almost completely overlays the CLN
(orange) band. The green band is the prediction using BGL
coe�cients from lattice QCD calculations in [16].

TABLE III. Fitted BGL121 coe�cients and correlations.

Value Correlation

a0 ⇥ 103 25.98± 1.40 1.00 0.26 �0.23 0.28 �0.31

b0 ⇥ 103 13.11± 0.18 0.26 1.00 �0.01 �0.01 �0.62

b1 ⇥ 103 �7.86± 12.51 �0.23 �0.01 1.00 0.26 �0.47

c1 ⇥ 103 �0.92± 0.97 0.28 �0.01 0.26 1.00 �0.49

|Vcb|⇥ 103 40.55± 0.91 �0.31 �0.62 �0.47 �0.49 1.00

where the disagreement is predominantly generated in
R2(w). The extracted |Vcb| values in the di↵erent lat-
tice scenarios are compatible with each other, as shown
in Table VI. We also investigate the beyond zero-recoil
lattice data for an equivalent number of BGL coe�cients
Na = 3, Nb = 3, Nc = 2 as used in Ref. [16]. We find a
much higher value of |Vcb| = (42.67 ± 0.98) ⇥ 10�3 with
a p-value of 5%. The full details of the fit can be found
in Appendix C.
Using on our measured cos ✓` shapes we determine

the forward-backward asymmetry over the full w phase-
space,

AFB =

R 1
0 d cos` d�/d cos` �

R 0
�1 d cos` d�/d cos`R 1

0 d cos` d�/d cos` +
R 0
�1 d cos` d�/d cos`

, (32)

TABLE IV. Fitted CLN coe�cients and correlations.

Value Correlation

⇢2 1.22± 0.09 1.00 0.58 �0.88 0.37

R1(1) 1.37± 0.08 0.58 1.00 �0.66 �0.03

R2(1) 0.88± 0.07 �0.88 �0.66 1.00 �0.14

|Vcb|⇥ 103 40.11± 0.85 0.37 �0.03 �0.14 1.00
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FIG. 8: The best fit values (solid red lines) and the corresponding ��2 + 1 errors (dashed lines)
of the unfolded decay rates are shown.
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2

prior spectrum t(0)j = Pr0(truth is j), IBU proceeds iter-
atively according to the equation:

t(n)
j =

X

i

Prn�1(truth is j | measure i) Pr(measure i)

=
X

i

Rijt
(n�1)
j

P
k Rikt(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0, X 0)](x) =
p(w,X)(x)

p(w0,X0)(x)
, (3)

where p(w,X) is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0, X 0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0, X 0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [18, 22–26]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫0(t), and when t is pushed to m, these become
detector-level weights ⌫push

0 (m) = ⌫0(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫push
n�1 (m) L[(1, Data), (⌫push

n�1 , Sim.)](m),

2. ⌫n(t) = ⌫n�1(t) L[(!pull
n , Gen.), (⌫n�1, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫push and !pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫0(t) = 1, in the first iteration Step 1 learns
!1(m) = pData(m)/pSim.(m), which is pulled back to the
particle-level weights !pull

1 (t). Step 2 simply converts

the per-instance weights !pull
1 (t) to a valid particle-level

weighting function ⌫1(t). After one iteration, the new
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

induced truth is:

⌫1(t) pGen.(t) =

Z
dm0 pGen.|Sim.(t|m0) pData(m

0). (4)

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space inte-
gral. In fact, OmniFold (and IBU) are iterative strate-
gies that converge to the maximum likelihood estimate
of the true particle-level distribution [27–31], which we
discuss in detail in the Appendix. After n iterations, the
unfolded distribution is:

p(n)
unfolded(t) = ⌫n(t) pGen.(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from pGen..

To demonstrate the versatility and power of Omni-
Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [32].
With the radiation pattern unfolded, one can obtain the
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FIG. 8: The best fit values (solid red lines) and the corresponding ��2 + 1 errors (dashed lines)
of the unfolded decay rates are shown.
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prior spectrum t(0)j = Pr0(truth is j), IBU proceeds iter-
atively according to the equation:

t(n)
j =

X

i

Prn�1(truth is j | measure i) Pr(measure i)

=
X

i

Rijt
(n�1)
j

P
k Rikt(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0, X 0)](x) =
p(w,X)(x)

p(w0,X0)(x)
, (3)

where p(w,X) is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0, X 0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0, X 0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [18, 22–26]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫0(t), and when t is pushed to m, these become
detector-level weights ⌫push

0 (m) = ⌫0(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫push
n�1 (m) L[(1, Data), (⌫push

n�1 , Sim.)](m),

2. ⌫n(t) = ⌫n�1(t) L[(!pull
n , Gen.), (⌫n�1, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫push and !pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫0(t) = 1, in the first iteration Step 1 learns
!1(m) = pData(m)/pSim.(m), which is pulled back to the
particle-level weights !pull

1 (t). Step 2 simply converts

the per-instance weights !pull
1 (t) to a valid particle-level

weighting function ⌫1(t). After one iteration, the new
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

induced truth is:

⌫1(t) pGen.(t) =

Z
dm0 pGen.|Sim.(t|m0) pData(m

0). (4)

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space inte-
gral. In fact, OmniFold (and IBU) are iterative strate-
gies that converge to the maximum likelihood estimate
of the true particle-level distribution [27–31], which we
discuss in detail in the Appendix. After n iterations, the
unfolded distribution is:

p(n)
unfolded(t) = ⌫n(t) pGen.(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from pGen..

To demonstrate the versatility and power of Omni-
Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [32].
With the radiation pattern unfolded, one can obtain the
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usual definition in the similar flavor-changing neutral-
current decay B ! K⇤(! K⇡)`+`� [18, 20]. The fully
di↵erential rate is

d�

dq2 d cos ✓V d cos ✓` d�
=

G2
F |V

L
ub|

2m3
B

2⇡4

⇥

⇢
J1s sin

2 ✓V + J1c cos
2 ✓V

+ (J2s sin
2 ✓V + J2c cos

2 ✓V ) cos 2✓`

+ J3 sin
2 ✓V sin2 ✓` cos 2�

+ J4 sin 2✓V sin 2✓` cos�+ J5 sin 2✓V sin ✓` cos�

+ (J6s sin
2 ✓V + J6c cos

2 ✓V ) cos ✓`
+ J7 sin 2✓V sin ✓` sin�+ J8 sin 2✓V sin 2✓` sin�

+ J9 sin
2 ✓V sin2 ✓` sin 2�

�
. (3)

Our convention for the ranges of the angular variables are
� 2 [0, 2⇡], ✓` 2 [0,⇡], ✓V 2 [0,⇡]. Switching � ! �� ⇡,
so that � 2 [�⇡,⇡], customary in B ! K⇤`+`�, amounts
to a sign flip in the terms

{J4, J5, J7, J8} ! {�J4, �J5, �J7, �J8} . (4)

The dependence on q2, as well as that on all form factors
and on the NP parameter ✏R, is contained in the 12 di-
mensionless Ji(q2, ✏R) functions. For the Lagrangian in
Eq. (1), some simplifications occur

J1s = 3J2s , J1c = �J2c , J7 = 0 , (5)

and additionally J6c = 0 for massless leptons. While the
functions J7,8,9 are proportional to Im ✏R, the other Ji
functions start with (Im ✏R)2 and Re ✏R, and so they are
mainly sensitive to Re ✏R. Partially integrated rates can
be found in Appendix A.

An important di↵erence between B ! ⇢`⌫̄ and B !

K⇤`+`� is that in the former case the leptonic current
is constrained to be left-handed, and in the latter case
several operators contribute already in the SM, thus it is
more compelling to study all possible NP contributions.
(Right-handed `⌫̄ couplings are severely constrained, e.g.,
by Michel parameter analyses.) The rate corresponding
to switching from left-handed to right-handed leptonic
current is obtained by the replacement ✓` ! ✓` � ⇡, re-
sulting in a sign flip of the terms

{J5, J6s, J6c, J7} ! {�J5, �J6s, �J6c, �J7} . (6)

(As well as multiplication by the square of the right-
handed coupling; neglecting lepton masses, there is no
interference between the two lepton couplings.) This dif-
ference can only be seen in an angular analysis, as it does
not contribute after integration over the angles. The q2

spectrum depends on 2J1s + J1c � (2J2s + J2c)/3 and
hence is insensitive to the chirality of the lepton current.

In B ! K⇤`+`� decay, a set of “clean observables”
were proposed [13], which can be calculated model inde-
pendently in the SM, if the so-called “non-factorizable”

contributions dominate the form factors [16]. These ob-
servables are ratios of the Ji functions, constructed so
that these non-factorizable contributions cancel at each
value of q2, while there are corrections from power sup-
pressed e↵ects as well as calculable “factorizable” con-
tributions. The cancellation of the non-factorizable con-
tributions arises because in the heavy b-quark limit, the
number of independent nonperturbative parameters is re-
duced due to the symmetries of SCET [21, 22]. However,
even in this case, symmetry breaking corrections may be
a significant limitation in practice [18]. In the following
we explore the possibilities of constructing observables
sensitive to a right-handed current.
A fully di↵erential analysis in four-dimensions, as re-

quired for the determination of the Ji in bins of q2 for
the calculation of the “clean observables” is experimen-
tally challenging: an unbinned fit to the four-dimensional
decay rates requires parametrizing the background com-
ponents and their correlations adequately and when faced
with this problem experimentalists often choose alter-
native approaches, e.g., projections are analyzed (see
Refs. [10, 11]) or event probabilities are assigned (see,
e.g., Ref. [12]). Both methods are complicated, and as
we are interested in the search for right-handed currents,
corresponding to constraining a single unknown parame-
ter, we explore simpler variables, which amount to count-
ing experiments in di↵erent regions of phase space.

B. One- and generalized two-dimensional
asymmetries

It is well known that the forward-backward asymmetry
is sensitive to the chiral structure of currents contributing
to a decay,

AFB =

R 0
�1 d cos ✓`(d�/d cos ✓`)�

R 1
0 d cos ✓`(d�/d cos ✓`)

R 1
�1 d cos ✓` (d�/d cos ✓`)

.

(7)
We study the sensitivity of this variable to ✏R in Sec. IV,
after discussing the form factor inputs used. The one-
dimensional distributions in � and ✓V are symmetric,
and hence it is not possible to construct asymmetry-type
observables with good sensitivity to ✏R from these one-
dimensional distributions.
Next, we integrate over one of the three angles, which

reduces the number of contributing Ji. We achieve the
best sensitivity by integrating over the angle �, which
leaves us with

d�

dq2 d cos ✓V d cos ✓`
=

G2
F |V L

ub|
2 m3

B

⇡3

⇢
J1s sin

2 ✓V

+ J1c cos
2 ✓V + (J2s sin

2 ✓V + J2c cos
2 ✓V ) cos 2✓`

+ (J6s sin
2 ✓V + J6c cos

2 ✓V ) cos ✓`

�
(8)

and J6c = 0 for massless leptons. This limits the possible
observables substantially, and none of the “clean observ-

G2
F Vcb

2
m3

B

2π4

Full angular information can be encoded into 12 coefficients :

Each of these coefficients 
is a function of  q2 ∼ w

With some smart folding, 

one can “easily” determine 

them

8 Coefficients relevant in massless limit & SM

http://cds.cern.ch/record/1605179
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How can we measure these coefficients?

Step 1: bin up phase-space in  in however many bins you can affordq2 ∼ w
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How can we measure these coefficients?

Step 1: bin up phase-space in  in however many bins you can affordq2 ∼ w

Step 2: Determine the # of signal events in specific phase-space regions

The coefficients are related to a weighted sun of events in a given  binq2

Ji =
1
Ni

8

∑
j=1

4

∑
k,l=1

ηχ
ij ηθℓ

ik ηθV
il [χi ⊗ θ j

ℓ ⊗ θk
V]

Phase space regionWeights

5

Ji ⌘�
i ⌘✓`

i ⌘✓V
i normalization Ni

J1s {+} {+, a, a,+} {�, c, c,�} 2⇡(1)2

J1c {+} {+, a, a,+} {+, d, d,+} 2⇡(1)(2/5)

J2s {+} {�, b, b,�} {�, c, c,�} 2⇡(�2/3)2

J2c {+} {�, b, b,�} {+, d, d,+} 2⇡(�2/3)(2/5)

J3 {+,�,�,+,+,�,�,+} {+} {+} 4(4/3)2

J4 {+,+,�,�,�,�,+,+} {+,+,�,�} {+,+,�,�} 4(4/3)2

J5 {+,+,�,�,�,�,+,+} {+} {+,+,�,�} 4(⇡/2)(4/3)

J6s {+} {+,+,�,�} {�, c, c,�} 2⇡(1)2

J6c {+} {+,+,�,�} {+, d, d,+} 2⇡(1)(2/5)

J7 {+,+,+,+,�,�,�,�} {+} {+,+,�,�} 4(⇡/2)(4/3)

J8 {+,+,+,+,�,�,�,�} {+,+,�,�} {+,+,�,�} 4(4/3)2

J9 {+,+,�,�,+,+,�,�} {+} {+} 4(4/3)2

TABLE III. Definition of the asymmetries in the three angles in bin-size of ⇡/4, see Eq- (10). The ± signs denote ±1, and {+}
denotes +1 in all entries in a given column. Simple choices are a = 1� 1/

p
2, b = a

p
2, c = 2

p
2� 1, and d = 1� 4

p
2/5.

III. FORM FACTOR CALCULATION AND FIT

A. The series expansion (SE) and the simplified
series expansion (SSE)

It has long been known that unitarity and analyticity
impose strong constraints on heavy meson decay form
factors [25–29]. We use a series expansion, also known as
the z expansion, to describe the form factor shape over
the full range of the dilepton invariant mass. Using this
expansion for a vector meson in the final state, instead
of a pseudoscalar, requires additional assumptions [30],
and we investigate the corresponding uncertainties. In
this paper we expand the form factors directly, instead
of the helicity amplitudes.

The series expansion uses unitarity to constrain the
shape of the form factors, and implies a simple and well-
motivated analytic parametrization over the full range of
q2. The form factors are written as

V (q2) =
1

BV (q2)�V (q2)

KX

k=0

↵V
k z(q2, q20)

k ,

Ai(q
2) =

1

BAi(q
2)�Ai(q

2)

KX

k=0

↵Ai
k z(q2, q20)

k , (15)

where unitarity constrains the shapes of the form factors
by predicting �F (q2), F = {V, Ai}, and also bounds
the coe�cients of the expansion in powers of the small

parameter, z(q2, q20), schematically as
P1

k=0

�
↵F
k

�2
< 1.

(For q2 relevant for semileptonic B decay, |z(q2, q20)| < 1.)
In Eq. (15) the variable

z(q2, q20) =

q
q2+ � q2 �

q
q2+ � q20

q
q2+ � q2 +

q
q2+ � q20

, (16)

maps the real q2 axis onto the unit circle, q20 is a free
parameter, and q2± ⌘ (mB ± m⇢)2. The range �1 <

q2 < q2+ is mapped onto the �1 < z(q2 < q2+, q
2
0) < 1

line segment on the real axis inside the unit disk, while
the branch cut region corresponding to B⇢ pair creation,
q2 > q2+, maps onto the unit circle, |z(q2 > q2+, q

2
0)| = 1.

The q20 parameter of this transformation is usually chosen
as

q20 = (mB +m⇢) (
p
mB �

p
m⇢)

2, (17)

so that for the physical q2 range of B ! ⇢`⌫̄ decay,
0  q2  q2�, the expansion parameter is minimal,

|z(q2, q20)| <
�
1� 4

q
1� q2�/q

2
+

���
1+ 4

q
1� q2�/q

2
+

�
⇡ 0.1.

The so-called Blaschke factors in Eq. (15) for each form
factor are

BF (q
2) ⌘

Y

RF

z(q2, m2
RF

) , (18)

where RF are the sub-threshold resonances (q2� < m2
RF

<
q2+) with the quantum numbers appropriate for each form
factor. By construction, BF (m2

RF
) = 0 and |BF (q2)| = 1

for q2 > q2+. The main shape information is given by the
functions [30]

�F (q
2) =

s
1

32⇡�F (n)

q2 � q2+
(q2+ � q20)

1/4


z(q2, 0)

�q2

�(n+3)/2

⇥


z(q2, q20)

q20 � q2

��1/2 z(q2, q2�)
q2� � q2

��3/4

. (19)

The only form factor dependent quantity is �F (n), which
is related to the polarization tensor ⇧µ⌫(q2) at q2 = 0,
and n is the number of derivatives (subtractions) neces-
sary to render the dispersion relation finite. This function
is calculable in an operator product expansion. Since it
is an overall constant which does not a↵ect the shapes
of the form factors (and we do not use a constraint onP

↵2
i ), we can absorb this quantity into the fit parame-

ters ↵i. In contrast, the number of required subtractions

Normalization

Factor

a = 1 − 1/ 2, b = a 2, c = 2 2 − 1,d = 1 − 4 2/5E.g. for :   Split   into 2 RegionsJ3 χ

′ +′ : χ ∈ [0,π /4], [3/4π,5/4π], [7/4π,2π]

′ −′ : χ ∈ [π /4,3/4π], [5/4π,7/4π]

Ñ+

Ñ−



Step 3: Reverse Migration and Acceptance Effects Ñq2
1

+

Ñq2
1−

Ñq2
2

+

Ñq2
2−

Ñq2
3

+

Ñq2
3−

Ñq2
4

+

Ñq2
4−

Ñq2
5

+

Ñq2
5−

= ℳ

Nq2
1

+

Nq2
1−

Nq2
2

+

Nq2
2−

Nq2
3

+

Nq2
3−

Nq2
4

+

Nq2
4−

Nq2
5

+

Nq2
5−

Bkg subtracted

yields

Migration

matrix

Unfolded yields

Resolution effects: events with a given “true” 
value of  can fall into 
different reconstructed bins 

{q2, cos θℓ, cos θV, χ}
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These matrices are determined for each of the four de-
cay modes individually using simulated events, and illus-
trated for the B̄0

! D⇤e⌫̄e decay mode in Fig. 6. The
response matrices are dominated by diagonal entries and
exhibit a similar structure in each of the four modes.

We unfold the signal yields determined in Sec. V using
matrix inversion. This produces the best linear unbiased
maximum likelihood estimator given by

~̂µ = R�1~̂n , (25)

with ~̂n being our estimated background subtracted yields.
We correct for acceptance e↵ects, and reverse the im-

pact of FSR photons from PHOTOS on the measured dis-
tributions. The acceptance functions for all modes are
shown in Fig. 7.

We find the shapes in the kinematic quantities, shown
in Fig. 8 and tabulated in Table I, after correcting our
background subtracted yields for the migration and ac-
ceptance.

The self-consistency of the measurement is checked
by comparing pairs of distributions, and by comparing
all four distributions, taking their covariance matrices
into account. We ignore the e↵ects of di↵erent masses
between B̄0 and B�, which are significantly smaller
than the measured uncertainties on our shapes. Details
(�2 / ndf and p-values) are listed in Table II.

VII. SYSTEMATIC UNCERTAINTIES

For the M2
miss fits we studied uncertainties originating

from the branching fractions and form factor parameter-
izations of the B ! D⇤ ` ⌫̄` and B ! D ` ⌫̄` decays in
our simulated events, the uncertainty from the overall
limited MC statistics, the lepton identification e�ciency,
the e�ciencies for reconstruction of tracks, neutral pions,
slow pions, and K0

S mesons, and the uncertainties of the
parameters describing the resolution smearing function.

The e↵ect of systematic uncertainties is directly in-
corporated into the likelihood function in Eq. 19. For
this we introduce a vector of nuisance parameters, ✓k,
for each fit template k. Each vector element represents
one bin. The nuisance parameters are constrained in
the likelihood using multivariate Gaussian distributions
Gk = Gk(0;✓k,⌃k), with ⌃k denoting the systematic co-
variance matrix for a given template k. The systematic
covariance is constructed from the sum over all possible
uncertainty sources a↵ecting a template k, i.e.

⌃k =
error sourcesX

s

⌃ks , (26)

with ⌃ks the covariance matrix of error source s.
The impact of nuisance parameters is included in

Eq. 20 as follows. The fractions fik for all templates
are rewritten as

fik =
⌘MC
ikP
j ⌘

MC
jk

!
⌘MC
ik (1 + ✓ik)P

j ⌘
MC
jk

�
1 + ✓jk

� , (27)
FIG. 6. Migration matrices for the B̄0 ! D⇤e⌫̄e mode, for the
four marginal distributions: w, cos ✓`, cos ✓V ,�. These matri-
ces transform the reconstructed to the generated quantity.

arXiv:2301.07529 [hep-ex]

E.g.  migration matrixw

Nq2
i

+ ⋅ e−1
eff,+,q2

i
= nq2

i
+

Nq2
i− ⋅ e−1

eff,−,q2
i

= nq2
i−

Acceptance / Eff. 

corrected yields

Acceptance x Efficiency 
Corrections:

Unfolded yields
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FIG. 7. Acceptance functions for the four decay modes con-
sidered. As expected they behave di↵erently for charged and
neutral B mesons, due to the charged and neutral slow pion
reconstruction. The uncertainty on the acceptance is statisti-
cal only and calculated using normal approximation intervals.
Additional systematic uncertainties are considered, for details
see the text.

FIG. 8. Our determined shapes for the four decay modes using
matrix inversion to correct for the migrations and applying
the acceptance correction.

TABLE II. The compatibility of the measurements from the
di↵erent decay modes determined with the statistical and sys-
tematic covariance matrix and the statistical covariance ma-
trix only. All modes agree well with each other.

�2 / dof p �2
stat / ndf pstat

B ! D⇤`⌫̄` 94.7 / 108 0.82 102.0 / 108 0.65

B̄0 ! D⇤+`⌫̄` 26.3 / 36 0.88 27.7 / 36 0.84

B� ! D⇤0`⌫̄` 31.6 / 36 0.68 33.8 / 36 0.57

B(0,�) ! D⇤(+,0)e⌫̄e 27.4 / 36 0.85 29.2 / 36 0.78

B(0,�) ! D⇤(+,0)µ⌫̄µ 42.5 / 36 0.21 45.7 / 36 0.13

we consider uncertainties originating from the D decay
branching fractions, the B ! D⇤ ` ⌫̄` form factors, the
limited MC statistics, the lepton identification e�ciency,
and the e�ciencies for reconstruction of tracks, neutral
pions, slow pions, and K0

S mesons. The impact of these
systematic e↵ects on the unfolding and acceptance cor-
rection is determined by varying the MC sample used to
determine the migration matrices and acceptance func-
tion within the uncertainty of the given systematic e↵ect,
and repeating the unfolding and acceptance correction
procedure.
The calibration factors for the FEI are determined

from a study of hadronically tagged inclusive B ! Xc`⌫̄`
decays. The study is performed in bins of the FEI signal
probability and the tag-side channels. The calibration
factors are defined as the ratio of expected and measured
number of events in each bin. The absolute e�ciency of
the FEI cancels in the measurement of the shapes. The
impact of the FEI on the measured shapes is determined
by weighting the events after removing FEI calibration
factors and determining the di↵erence after applying un-
folding and acceptance correction. We treat this uncer-
tainty as fully correlated.
The individual contributions of the uncertainties to the

normalized shapes are listed in Appendix A.

VIII. DETERMINATION OF THE FORM
FACTORS AND IMPLICATIONS ON |Vcb|

We use the averaged B ! D⇤`⌫̄` shapes to fit the BGL
and CLN form factor parameterizations to the data. We
minimize the �2 defined by

�2 =

 
�~�m

�m �
� ~�p(~x)

�p(~x)

!
C�1

exp

 
�~�m

�m �
�~�p(~x)

�p(~x)

!T

+ (�ext
� �p(~x))2/�(�ext)2

+ (hX � hLQCD
X )C�1

LQCD(hX � hLQCD
X ) , (28)

with the measured (predicted) di↵erential rate

�~�m(p)/�m(p), where the predicted rate is a func-
tion of the form factor coe�cients ~x and |Vcb|. The
rate is calculated assuming the meson masses of
mB = 5.28GeV and mD

⇤ = 2.01GeV, and the lepton as
massless. Cexp (CLQCD) is the covariance matrix of the
experimental (lattice) data.
We rely on external branching fractions provided by

HFLAV [11] to determine |Vcb| :

B(B�
! D⇤0`⌫̄`) = (5.58± 0.22)% , (29)

B(B̄0
! D⇤+`⌫̄`) = (4.97± 0.12)% . (30)

We combine these branching fractions assuming isospin
and by using the B+/0 lifetimes ⌧B̄0 = 1.520 ps and
⌧
B

� = 1.638 ps from Ref. [3]. Expressing this average

as a B̄0 branching fraction we find:

B(B̄0
! D⇤+`⌫̄`) = (5.03± 0.10)% . (31)

arXiv:2301.07529 [hep-ex]
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Step 4: Calculate  for a given  binJi w/q2

nq2
i

+

nq2
i−

→ ̂Jq2
i

3 =
1
Γ

×
nq2

i
+ − nq2

i−

4(4/3)2

Normalization

5

Ji ⌘�
i ⌘✓`

i ⌘✓V
i normalization Ni

J1s {+} {+, a, a,+} {�, c, c,�} 2⇡(1)2

J1c {+} {+, a, a,+} {+, d, d,+} 2⇡(1)(2/5)

J2s {+} {�, b, b,�} {�, c, c,�} 2⇡(�2/3)2

J2c {+} {�, b, b,�} {+, d, d,+} 2⇡(�2/3)(2/5)

J3 {+,�,�,+,+,�,�,+} {+} {+} 4(4/3)2

J4 {+,+,�,�,�,�,+,+} {+,+,�,�} {+,+,�,�} 4(4/3)2

J5 {+,+,�,�,�,�,+,+} {+} {+,+,�,�} 4(⇡/2)(4/3)

J6s {+} {+,+,�,�} {�, c, c,�} 2⇡(1)2

J6c {+} {+,+,�,�} {+, d, d,+} 2⇡(1)(2/5)

J7 {+,+,+,+,�,�,�,�} {+} {+,+,�,�} 4(⇡/2)(4/3)

J8 {+,+,+,+,�,�,�,�} {+,+,�,�} {+,+,�,�} 4(4/3)2

J9 {+,+,�,�,+,+,�,�} {+} {+} 4(4/3)2

TABLE III. Definition of the asymmetries in the three angles in bin-size of ⇡/4, see Eq- (10). The ± signs denote ±1, and {+}
denotes +1 in all entries in a given column. Simple choices are a = 1� 1/

p
2, b = a

p
2, c = 2

p
2� 1, and d = 1� 4

p
2/5.

III. FORM FACTOR CALCULATION AND FIT

A. The series expansion (SE) and the simplified
series expansion (SSE)

It has long been known that unitarity and analyticity
impose strong constraints on heavy meson decay form
factors [25–29]. We use a series expansion, also known as
the z expansion, to describe the form factor shape over
the full range of the dilepton invariant mass. Using this
expansion for a vector meson in the final state, instead
of a pseudoscalar, requires additional assumptions [30],
and we investigate the corresponding uncertainties. In
this paper we expand the form factors directly, instead
of the helicity amplitudes.

The series expansion uses unitarity to constrain the
shape of the form factors, and implies a simple and well-
motivated analytic parametrization over the full range of
q2. The form factors are written as

V (q2) =
1

BV (q2)�V (q2)

KX

k=0

↵V
k z(q2, q20)

k ,

Ai(q
2) =

1

BAi(q
2)�Ai(q

2)

KX

k=0

↵Ai
k z(q2, q20)

k , (15)

where unitarity constrains the shapes of the form factors
by predicting �F (q2), F = {V, Ai}, and also bounds
the coe�cients of the expansion in powers of the small

parameter, z(q2, q20), schematically as
P1

k=0

�
↵F
k

�2
< 1.

(For q2 relevant for semileptonic B decay, |z(q2, q20)| < 1.)
In Eq. (15) the variable

z(q2, q20) =

q
q2+ � q2 �

q
q2+ � q20

q
q2+ � q2 +

q
q2+ � q20

, (16)

maps the real q2 axis onto the unit circle, q20 is a free
parameter, and q2± ⌘ (mB ± m⇢)2. The range �1 <

q2 < q2+ is mapped onto the �1 < z(q2 < q2+, q
2
0) < 1

line segment on the real axis inside the unit disk, while
the branch cut region corresponding to B⇢ pair creation,
q2 > q2+, maps onto the unit circle, |z(q2 > q2+, q

2
0)| = 1.

The q20 parameter of this transformation is usually chosen
as

q20 = (mB +m⇢) (
p
mB �

p
m⇢)

2, (17)

so that for the physical q2 range of B ! ⇢`⌫̄ decay,
0  q2  q2�, the expansion parameter is minimal,

|z(q2, q20)| <
�
1� 4

q
1� q2�/q

2
+

���
1+ 4

q
1� q2�/q

2
+

�
⇡ 0.1.

The so-called Blaschke factors in Eq. (15) for each form
factor are

BF (q
2) ⌘

Y

RF

z(q2, m2
RF

) , (18)

where RF are the sub-threshold resonances (q2� < m2
RF

<
q2+) with the quantum numbers appropriate for each form
factor. By construction, BF (m2

RF
) = 0 and |BF (q2)| = 1

for q2 > q2+. The main shape information is given by the
functions [30]

�F (q
2) =

s
1

32⇡�F (n)

q2 � q2+
(q2+ � q20)

1/4


z(q2, 0)

�q2

�(n+3)/2

⇥


z(q2, q20)

q20 � q2

��1/2 z(q2, q2�)
q2� � q2

��3/4

. (19)

The only form factor dependent quantity is �F (n), which
is related to the polarization tensor ⇧µ⌫(q2) at q2 = 0,
and n is the number of derivatives (subtractions) neces-
sary to render the dispersion relation finite. This function
is calculable in an operator product expansion. Since it
is an overall constant which does not a↵ect the shapes
of the form factors (and we do not use a constraint onP

↵2
i ), we can absorb this quantity into the fit parame-

ters ↵i. In contrast, the number of required subtractions

a = 1 − 1/ 2, b = a 2, c = 2 2 − 1,d = 1 − 4 2/5

More involved for the other coefficients: need full experimental 
covariance between all measured  bins and coefficients 

(statistical overlap, systematics)

w/q2

fictitious errors

̂ Jq2 i 3

{Jq2
i

1s , Jq2
i

1c , Jq2
i

2s , Jq2
i

2c , Jq2
i

3 , Jq2
i

4 , Jq2
i

5 , Jq2
i

6s }

SM:

e.g. 5 x 8 = 40 coefficients

Γ =
8
9

π (3∑
i

J q2
i

1c + 6∑
i

J q2
i

1s − ∑
i

J q2
i

2c − 2∑
i

J q2
i

2s )

or full thing (SM + NP) 

with 5 x 12 = 60 coefficients
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Talk Overview

Measuring |Vub| and |Vcb|
* Decays don’t happen at quark level, non-perturbative physics make things
complicated

Vqb
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�

�

⌫̄
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q

Vqb

W
�

�

⌫̄

b

q
u

u

* Hadronic transition matrix element needs to be Lorentz covariant

! Function of Lorentz vectors and scalars of the decay ! p
2
B , p

2
X , pB · pX

! On-shell B ! X decay: form factors encode non-perturbative physics

* Form factors unknown functions of q
2 = (pB � pX )2 = (p` + p⌫)2

* E.g. decay rate in the SM for B ! scalar ` ⌫̄` decay: f = single form factor

|Vqb|2 ⇥ �(B ! X ` ⌫̄`) = |Vqb|2 ⇥ G
2
F �0

h
f (q2)

i2

12 / 31

q

q
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ℓ−

ν̄ℓVcb

q
q

2. From 1D projections to full 
angular information

Idea range from

“Open Data” 

to

“Reinterpretation  

friendly”  
observables

Di↵erential Decay Rate of B ! D⇤`⌫`

d�B ! D
⇤(! . . . )`⌫`

dwd cos ✓`d cos ✓Vd�
=

6mBm
2
D⇤

8(4⇡)4

p
w2 � 1(1 � 2wr + r

2)G2
F|Vcb|

2 ⇥ B(D⇤ ! . . . )

⇥
✓
(1 � cos ✓`)

2 sin2 ✓VH
2
+ + (1 + cos ✓`)

2 sin2 ✓VH
2
�

+ 4 sin2 ✓` cos2 ✓VH
2
0 � 2 sin2 ✓` sin2 ✓V cos 2�H+H�

� 4 sin ✓`(1 � cos ✓`) sin ✓V cos ✓V cos�H+H0

+ 4 sin ✓`(1 + cos ✓`) sin ✓V cos ✓V cos�H�H0

◆

r = mD⇤/mB

w = (m2
B + m

2
D⇤ � q

2)/(2mBmD⇤ )

|Vcb| =
q

B(B!D⇤`⌫`)
⌧B�(B!D⇤`⌫`) 17
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The form factor normalization is constrained at zero-
recoil with hX = hA1

(1) = 0.906 ± 0.013 from Ref. [17]
for our nominal fit scenario. For the BGL form factor
fit, we truncate the series based on the result of a nested
hypothesis test (NHT) [40] with the additional constraint
that the inclusion of additional coe�cients do not result
in correlations of larger than r = 0.95. This leads to the
choice of na = 1, nb = 2, nc = 1 free parameters, with the
constraint for c0 defined in Eq. (12). More details about
the NHT can be found in Appendix B. For the CLN type
parameterization we determine three coe�cients: ⇢2 ,
R1(1), and R2(1).

Both form factor parameterizations are able to describe
the data with p-values of 7% and 6% for BGL and CLN,
respectively, and the extracted |Vcb| values of both deter-
minations are compatible. The fitted shapes are shown
in Fig. 9 (red and blue bands) and the numerical values
for the coe�cients and |Vcb| are listed in Table III and
Table IV for BGL and CLN, respectively. In the figure
we also show the recent beyond zero-recoil prediction of
Ref. [16] as a green band. Its agreement with the mea-
sured spectra has a p-value of 11%. We also perform fits
to our measured B̄0 and B� shapes separately, with the
corresponding external branching fraction input. The re-
sults are compatible with each other, and the individual
extracted |Vcb| values are listed in Table V. We observe a
discrepancy between the |Vcb| values from the charged-
and neutral-only fits (p = 5%). Correcting for the exist-
ing disagreement between the charged and neutral input
branching fractions from HFLAV [11] and comparing the
full set of BGL coe�cients and |Vcb| we recover a p-value
of 20%.

Additionally, we tested explicitly the impact of the
d’Agostini bias [41] on the reported results. The impact
of this bias on our quoted values of |Vcb| and the form
factor parameters is approximately a factor of 30 smaller
than the quoted uncertainties and we thus do not apply
an additional correction.

We also test the impact of the preliminary lattice re-
sults that constrain the B ! D⇤ form factors beyond
zero recoil of Ref. [16] using two scenarios:

1. Inclusion of hA1
beyond zero recoil:

hX ⌘ hA1
(w) ,

2. Inclusion of the full lattice information:
hX ⌘ hX(w) = {hA1

(w), R1(w), R2(w)},

where we consider the points at w = {1.03, 1.10, 1.17}
and use the provided correlations between the lattice
data points. We translate the lattice data points and
propagate their uncertainty and correlation into pre-
dictions of R1(w) = (w + 1)mBmD

⇤g(w)/f(w) and
R2(w) = (w� r)/(w�1)�F1(w)/(mB(w�1)f(w)) with
r = mD

⇤/mB .
Including lattice points for hA1

beyond zero-recoil re-
sults in a good fit (pBGL = 11%, pCLN = 9%) compatible
with our nominal scenario. Including the full lattice in-
formation results in a poor fit (pBGL = 2%, pCLN = 2%),

FIG. 9. The fitted shapes for both BGL (blue) and CLN (or-
ange) parametrization. Both parametrizations are able to ex-
plain the data, and are compatible with each other. Note that
the BGL (blue) band almost completely overlays the CLN
(orange) band. The green band is the prediction using BGL
coe�cients from lattice QCD calculations in [16].

TABLE III. Fitted BGL121 coe�cients and correlations.

Value Correlation

a0 ⇥ 103 25.98± 1.40 1.00 0.26 �0.23 0.28 �0.31

b0 ⇥ 103 13.11± 0.18 0.26 1.00 �0.01 �0.01 �0.62

b1 ⇥ 103 �7.86± 12.51 �0.23 �0.01 1.00 0.26 �0.47

c1 ⇥ 103 �0.92± 0.97 0.28 �0.01 0.26 1.00 �0.49

|Vcb|⇥ 103 40.55± 0.91 �0.31 �0.62 �0.47 �0.49 1.00

where the disagreement is predominantly generated in
R2(w). The extracted |Vcb| values in the di↵erent lat-
tice scenarios are compatible with each other, as shown
in Table VI. We also investigate the beyond zero-recoil
lattice data for an equivalent number of BGL coe�cients
Na = 3, Nb = 3, Nc = 2 as used in Ref. [16]. We find a
much higher value of |Vcb| = (42.67 ± 0.98) ⇥ 10�3 with
a p-value of 5%. The full details of the fit can be found
in Appendix C.
Using on our measured cos ✓` shapes we determine

the forward-backward asymmetry over the full w phase-
space,

AFB =

R 1
0 d cos` d�/d cos` �

R 0
�1 d cos` d�/d cos`R 1

0 d cos` d�/d cos` +
R 0
�1 d cos` d�/d cos`

, (32)

TABLE IV. Fitted CLN coe�cients and correlations.

Value Correlation

⇢2 1.22± 0.09 1.00 0.58 �0.88 0.37

R1(1) 1.37± 0.08 0.58 1.00 �0.66 �0.03

R2(1) 0.88± 0.07 �0.88 �0.66 1.00 �0.14

|Vcb|⇥ 103 40.11± 0.85 0.37 �0.03 �0.14 1.00

w
Working around the curse of


dimensionality

3. Potential of full angular fits 

1. Why we need to do better to 
preserve our experimental 
Information
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1D versus Full Angular Sensitivities

Some distinguishing power of

BGL “121” versus “222” shapes in 


Otherwise “222” is completely overfitted 
with strongly correlated coefficients

w
Little distinguishing power

in 1D projections of angles


 blind directions !→

Errors and central values from 

1D projection fits of 


arXiv:2301.07529 (Table XVI)

https://arxiv.org/abs/2301.07529
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1D versus Full Angular Sensitivities Errors and central values from 

1D projection fit of 


arXiv:2301.07529 (Table XVI)

Angular Coefficients 
show greater 


separation power

Massive 
Leptons NP Coefficients

SM Coefficients

https://arxiv.org/abs/2301.07529


# 31

1D versus Full Angular Sensitivities
BGL121 1D projection fit of 


arXiv:2301.07529 (Table XVI) or 

FNAL/MILC prediction  

[arXiv:2105.14019]

https://arxiv.org/abs/2301.07529
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1D versus Full Angular Sensitivities
BGL121 1D projection fit of 


arXiv:2301.07529 (Table XVI) or 

FNAL/MILC prediction  

[arXiv:2105.14019]

SM Coefficients

Angular Coefficients also will allow us to better investigate

what is going on with lattice versus data tensions..

Massive 
Leptons NP Coefficients

https://arxiv.org/abs/2301.07529
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Summary

Angular information is crucial to better 
study :


The future will hopefully go towards 
open data … but part of a longer 
discussion.


Unbinned unfolded data is a great new 
idea; best preserves the properties of 
the underlying data; but many details 
need to be ironed out


In the meantime: Binned angular 
coefficients seem a very promising 
strategy to preserve our 
measurements.  
 

B → D*ℓν̄ℓ

3

usual definition in the similar flavor-changing neutral-
current decay B ! K⇤(! K⇡)`+`� [18, 20]. The fully
di↵erential rate is

d�

dq2 d cos ✓V d cos ✓` d�
=

G2
F |V

L
ub|

2m3
B

2⇡4

⇥

⇢
J1s sin

2 ✓V + J1c cos
2 ✓V

+ (J2s sin
2 ✓V + J2c cos

2 ✓V ) cos 2✓`

+ J3 sin
2 ✓V sin2 ✓` cos 2�

+ J4 sin 2✓V sin 2✓` cos�+ J5 sin 2✓V sin ✓` cos�

+ (J6s sin
2 ✓V + J6c cos

2 ✓V ) cos ✓`
+ J7 sin 2✓V sin ✓` sin�+ J8 sin 2✓V sin 2✓` sin�

+ J9 sin
2 ✓V sin2 ✓` sin 2�

�
. (3)

Our convention for the ranges of the angular variables are
� 2 [0, 2⇡], ✓` 2 [0,⇡], ✓V 2 [0,⇡]. Switching � ! �� ⇡,
so that � 2 [�⇡,⇡], customary in B ! K⇤`+`�, amounts
to a sign flip in the terms

{J4, J5, J7, J8} ! {�J4, �J5, �J7, �J8} . (4)

The dependence on q2, as well as that on all form factors
and on the NP parameter ✏R, is contained in the 12 di-
mensionless Ji(q2, ✏R) functions. For the Lagrangian in
Eq. (1), some simplifications occur

J1s = 3J2s , J1c = �J2c , J7 = 0 , (5)

and additionally J6c = 0 for massless leptons. While the
functions J7,8,9 are proportional to Im ✏R, the other Ji
functions start with (Im ✏R)2 and Re ✏R, and so they are
mainly sensitive to Re ✏R. Partially integrated rates can
be found in Appendix A.

An important di↵erence between B ! ⇢`⌫̄ and B !

K⇤`+`� is that in the former case the leptonic current
is constrained to be left-handed, and in the latter case
several operators contribute already in the SM, thus it is
more compelling to study all possible NP contributions.
(Right-handed `⌫̄ couplings are severely constrained, e.g.,
by Michel parameter analyses.) The rate corresponding
to switching from left-handed to right-handed leptonic
current is obtained by the replacement ✓` ! ✓` � ⇡, re-
sulting in a sign flip of the terms

{J5, J6s, J6c, J7} ! {�J5, �J6s, �J6c, �J7} . (6)

(As well as multiplication by the square of the right-
handed coupling; neglecting lepton masses, there is no
interference between the two lepton couplings.) This dif-
ference can only be seen in an angular analysis, as it does
not contribute after integration over the angles. The q2

spectrum depends on 2J1s + J1c � (2J2s + J2c)/3 and
hence is insensitive to the chirality of the lepton current.

In B ! K⇤`+`� decay, a set of “clean observables”
were proposed [13], which can be calculated model inde-
pendently in the SM, if the so-called “non-factorizable”

contributions dominate the form factors [16]. These ob-
servables are ratios of the Ji functions, constructed so
that these non-factorizable contributions cancel at each
value of q2, while there are corrections from power sup-
pressed e↵ects as well as calculable “factorizable” con-
tributions. The cancellation of the non-factorizable con-
tributions arises because in the heavy b-quark limit, the
number of independent nonperturbative parameters is re-
duced due to the symmetries of SCET [21, 22]. However,
even in this case, symmetry breaking corrections may be
a significant limitation in practice [18]. In the following
we explore the possibilities of constructing observables
sensitive to a right-handed current.
A fully di↵erential analysis in four-dimensions, as re-

quired for the determination of the Ji in bins of q2 for
the calculation of the “clean observables” is experimen-
tally challenging: an unbinned fit to the four-dimensional
decay rates requires parametrizing the background com-
ponents and their correlations adequately and when faced
with this problem experimentalists often choose alter-
native approaches, e.g., projections are analyzed (see
Refs. [10, 11]) or event probabilities are assigned (see,
e.g., Ref. [12]). Both methods are complicated, and as
we are interested in the search for right-handed currents,
corresponding to constraining a single unknown parame-
ter, we explore simpler variables, which amount to count-
ing experiments in di↵erent regions of phase space.

B. One- and generalized two-dimensional
asymmetries

It is well known that the forward-backward asymmetry
is sensitive to the chiral structure of currents contributing
to a decay,

AFB =

R 0
�1 d cos ✓`(d�/d cos ✓`)�

R 1
0 d cos ✓`(d�/d cos ✓`)

R 1
�1 d cos ✓` (d�/d cos ✓`)

.

(7)
We study the sensitivity of this variable to ✏R in Sec. IV,
after discussing the form factor inputs used. The one-
dimensional distributions in � and ✓V are symmetric,
and hence it is not possible to construct asymmetry-type
observables with good sensitivity to ✏R from these one-
dimensional distributions.
Next, we integrate over one of the three angles, which

reduces the number of contributing Ji. We achieve the
best sensitivity by integrating over the angle �, which
leaves us with

d�

dq2 d cos ✓V d cos ✓`
=

G2
F |V L

ub|
2 m3
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J1s sin
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�
(8)

and J6c = 0 for massless leptons. This limits the possible
observables substantially, and none of the “clean observ-

G2
F Vcb

2
m3

B

2π4
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FIG. 9. Our lattice-only normalised di↵erential decay rates for B ! D
⇤
`⌫̄, with respect to the angular variables defined

in Fig. 1, are shown as the red bands. We also include binned untagged data for e/µ from Belle [21]. Note the clear di↵erence
in shape, particularly for the di↵erential rate with respect to w. Our tauonic di↵erential decay rates are shown in green.
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⇤,

we see a similar di↵erence in shape between SM theory and
experiment to that seen for Belle B ! D

⇤ data in Fig. 9. The
semitauonic mode is plotted as the green band.
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w. Our lattice-only |F(w)|2 is multiplied by Vcb extracted
from the joint theory/experiment fit.

minimisation including all correlations against the mea-
sured bin totals from Belle. Note that throughout this
section we assume no lepton flavour universality (LFU)
violation between the light ` = µ and ` = e modes.

J. Harrison & T.H. Davies [HPQCD]      [arXiv:2304.03137 [hep-lat]]

Is it meaningful to combine LQCD and data that do not agree in shape?

What does this mean for our  values? Can we trust  ?|Vcb | ℱ(1)



16

1.0 1.1 1.2 1.3 1.4 1.5
w

0

1

2

1 �
µ

d� dw

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

cos(�W)

0.2

0.4

0.6

0.8

1.0

1.2

1 �
µ

d�
d

co
s(

� W
)

HPQCD B ! D���̄�

HPQCD B ! D�� �̄�

Belle B0 ! D��µ+�µ

Belle B0 ! D��e+�e

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

cos(�D�)

0.2

0.4

0.6

1 �
µ

d�
d

co
s(

� D
� )

0 � 2�
�

0.05

0.10

0.15

0.20

1 �
µ

d� d�

FIG. 9. Our lattice-only normalised di↵erential decay rates for B ! D
⇤
`⌫̄, with respect to the angular variables defined

in Fig. 1, are shown as the red bands. We also include binned untagged data for e/µ from Belle [21]. Note the clear di↵erence
in shape, particularly for the di↵erential rate with respect to w. Our tauonic di↵erential decay rates are shown in green.

1.0 1.1 1.2 1.3 1.4
w

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 �
d� dw

Bs ! D�
sµ�̄µ

Bs ! D�
s� �̄�

Bs ! D�
sµ�̄µ, Binned

LHCb Bs ! D�
sµ�̄µ

FIG. 10. Our normalised di↵erential decay rate for Bs !
D

⇤
s`⌫̄ with respect to w is shown as the blue band. We also

include binned data from LHCb [65]. Here, as for B ! D
⇤,

we see a similar di↵erence in shape between SM theory and
experiment to that seen for Belle B ! D

⇤ data in Fig. 9. The
semitauonic mode is plotted as the green band.

1.0 1.1 1.2 1.3 1.4 1.5
w

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

|F
(w

)|2
⇥

|V
cb
� E

W
|2

HPQCD B ! D���̄�

Belle B0 ! D��e+�e

Belle B0 ! D��µ+�µ

FIG. 11. |F(w)⌘EWVcb|2, defined via Eq. (37), plotted against
w. Our lattice-only |F(w)|2 is multiplied by Vcb extracted
from the joint theory/experiment fit.

minimisation including all correlations against the mea-
sured bin totals from Belle. Note that throughout this
section we assume no lepton flavour universality (LFU)
violation between the light ` = µ and ` = e modes.

Same data / MC disagreement? 
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Omnifold 2

prior spectrum t(0)j = Pr0(truth is j), IBU proceeds iter-
atively according to the equation:

t(n)
j =

X

i

Prn�1(truth is j | measure i) Pr(measure i)

=
X

i

Rijt
(n�1)
j

P
k Rikt(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0, X 0)](x) =
p(w,X)(x)

p(w0,X0)(x)
, (3)

where p(w,X) is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0, X 0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0, X 0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [18, 22–26]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫0(t), and when t is pushed to m, these become
detector-level weights ⌫push

0 (m) = ⌫0(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫push
n�1 (m) L[(1, Data), (⌫push

n�1 , Sim.)](m),

2. ⌫n(t) = ⌫n�1(t) L[(!pull
n , Gen.), (⌫n�1, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫push and !pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫0(t) = 1, in the first iteration Step 1 learns
!1(m) = pData(m)/pSim.(m), which is pulled back to the
particle-level weights !pull

1 (t). Step 2 simply converts

the per-instance weights !pull
1 (t) to a valid particle-level

weighting function ⌫1(t). After one iteration, the new
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Sy
nt

he
ti

c
N

at
ur

al
Detector-level

Data

Particle-level

Generation

Truth

Pull Weights

Push Weights

Step 1: 
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

induced truth is:

⌫1(t) pGen.(t) =

Z
dm0 pGen.|Sim.(t|m0) pData(m

0). (4)

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space inte-
gral. In fact, OmniFold (and IBU) are iterative strate-
gies that converge to the maximum likelihood estimate
of the true particle-level distribution [27–31], which we
discuss in detail in the Appendix. After n iterations, the
unfolded distribution is:

p(n)
unfolded(t) = ⌫n(t) pGen.(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from pGen..

To demonstrate the versatility and power of Omni-
Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [32].
With the radiation pattern unfolded, one can obtain the

2

prior spectrum t(0)j = Pr0(truth is j), IBU proceeds iter-
atively according to the equation:

t(n)
j =

X

i

Prn�1(truth is j | measure i) Pr(measure i)

=
X

i

Rijt
(n�1)
j

P
k Rikt(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0, X 0)](x) =
p(w,X)(x)

p(w0,X0)(x)
, (3)

where p(w,X) is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0, X 0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0, X 0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [18, 22–26]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫0(t), and when t is pushed to m, these become
detector-level weights ⌫push

0 (m) = ⌫0(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫push
n�1 (m) L[(1, Data), (⌫push

n�1 , Sim.)](m),

2. ⌫n(t) = ⌫n�1(t) L[(!pull
n , Gen.), (⌫n�1, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫push and !pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫0(t) = 1, in the first iteration Step 1 learns
!1(m) = pData(m)/pSim.(m), which is pulled back to the
particle-level weights !pull

1 (t). Step 2 simply converts

the per-instance weights !pull
1 (t) to a valid particle-level

weighting function ⌫1(t). After one iteration, the new
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

induced truth is:

⌫1(t) pGen.(t) =

Z
dm0 pGen.|Sim.(t|m0) pData(m

0). (4)

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space inte-
gral. In fact, OmniFold (and IBU) are iterative strate-
gies that converge to the maximum likelihood estimate
of the true particle-level distribution [27–31], which we
discuss in detail in the Appendix. After n iterations, the
unfolded distribution is:

p(n)
unfolded(t) = ⌫n(t) pGen.(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from pGen..

To demonstrate the versatility and power of Omni-
Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [32].
With the radiation pattern unfolded, one can obtain the
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Observable

Method m M w ln ⇢ ⌧21 zg

OmniFold 2.77 0.33 0.10 0.35 0.53 0.68
MultiFold 3.80 0.89 0.09 0.37 0.26 0.15
UniFold 8.82 1.46 0.15 0.59 1.11 0.59
IBU 9.31 1.51 0.11 0.71 1.10 0.37
Data 24.6 130 15.7 14.2 11.1 3.76
Generation 3.62 15 22.4 19 20.8 3.84

TABLE I. The unfolding performance of OmniFold, Multi-
Fold, and UniFold on six jet substructure observables, com-
pared to IBU. The performance is quantified by the triangular

discriminator [60–62] �(p, q) = 1
2

R
d� (p(�)�q(�))2

p(�)+q(�) (⇥103) be-

tween the unfolded and truth-level (binned) histograms. Also
shown are the distances from data (no unfolding) and gen-
eration (the prior). The best unfolding method for each ob-
servable is shown in bold. All methods perform well, with
OmniFold providing consistently good performance.

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [52, 53], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [54–58] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [57, 58] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [59].

The unfolding performance of OmniFold is shown in
Fig. 2 and compared to IBU, both with n = 5 iterations.
We found little di↵erence between n = 3 and n = 5,
though OmniFold exhibits a slight preference for more
iterations. OmniFold succeeds in simultaneously un-
folding all of these observables, achieving performance
comparable to or better than IBU applied to each observ-
able individually. The mass is challenging for all meth-
ods as particle-type information is relevant at particle-
level but is not fully known at detector-level, introducing
additional prior dependence. Though OmniFold is un-
binned, the data are only able to constrain energy and
angular scales comparable to the detector resolution.

Statistical uncertainties from the prior distribution are
shown in the bottom panels of Fig. 2, holding the un-
folding procedure (i.e. response matrix and reweighting)
fixed. For this proof-of-concept study, we do not show
systematic uncertainties, though the procedure for deriv-
ing them is the same as for IBU. Non-closure and model-
ing uncertainties can be derived in the standard way by
testing the procedure on di↵erent Monte Carlo samples
and comparing the results to the known “truth” distri-
butions. (We checked that OmniFold satisfies technical
closure when Pythia is unfolded to itself.) Experimen-
tal systematic uncertainties can be obtained by varying
the relevant e↵ects and repeating the unfolding proce-
dure. Like other unfolding procedures, OmniFold can-
not improve the results in phase-space regions that are
unconstrained by observed quantities. It can, however,
improve the performance if the full phase space contains

FIG. 3. The correlation dimension of the space of jets, un-
folded with OmniFold. The unfolded results closely match
the truth-level dimension over most of the energy range, tend-
ing toward the prior in the more di�cult phase space region
at low Q. Unfolding a complicated statistic such as the cor-
relation dimension is challenging with standard methods.

auxiliary features relevant for the detector response. To
capitalize on this full phase-space approach, it is essen-
tial that the detector simulation properly describes these
features and that systematic uncertainties are estimated
using a high-dimensional approach [63, 64].

To highlight the flexibility of our unfolding framework,
we study variations of OmniFold, where the available
information is varied by controlling the inputs:

• UniFold: A single observable as input. This is an
unbinned version of IBU.

• MultiFold: Many observables as input. Here, we
use the six jet substructure observables in Fig. 2 to
derive the detector response.

• OmniFold: The full event (or jet) as input, using
the full phase space information.

The unfolding performance of each method on our six
substructure observables is tabulated in Table I and com-
pared to IBU. The UniFold and MultiFold implemen-
tations both use dense networks with three layers of one
hundred nodes each and a two-node output layer. We
see good unfolding performance across all methods, and
even though OmniFold is not directly trained on these
six observables, it performs comparably to or better than
MultiFold. While the detector response depends on
the jet rapidity, we checked that MultiFold did not
significantly benefit from including the rapidity, though
doing so could be important in a real experimental con-
text. In general, additional information can be included
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (Sim./Gen.), unfolded with OmniFold and compared to IBU.OmniFold matches or exceeds the unfolding performance
of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas unfolding
with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [33–35] and Tune 26 [36] of Pythia 8.243 [37–
39] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [40] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [41] implemented in
FastJet 3.3.2 [42, 43]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used

for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [44, 45] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle
�, and particle identification code [46], restricted to the
experimentally-accessible information (PFN-Ex [44]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [44] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [47].
Neural networks are trained with Keras [48] and Tensor-
Flow [49] using the Adam [50] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [51]. The
first four are jet mass m, constituent multiplicity M , the


