New physics search with angular distribution of $B \rightarrow D^{*} \mid v$ decay

Emi Kou (IJCLab)

In collaboration with T. Kapoor \& Z.-R. Huang \&
T. Kaneko (JLQCD)
D. Ferlewicz, Ph. Urquijo, E. Waheed (Belle)

13 April 2023 @ Frascati

Outline

Introduction

- Angular distribution and new physics search
- Form factor dependence

The impact of the new lattice data

- Fermilab and JLQCD result on the form factors
- Impacts of the lattice results

New Physics fit of experimental data including lattice data
-Toy study of unbanned analysis

- Preliminary results

Introduction

Introduction

$$
\begin{aligned}
& \frac{d \Gamma\left(B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}\right)}{d w d \cos \theta_{\ell} d \cos \theta_{\mathrm{v}} d \chi}= \\
& \frac{\eta_{\mathrm{EW}}^{2} 3 m_{B} m_{D^{*}}^{2}}{4(4 \pi)^{2}} G_{F}^{2}\left|V_{c b}\right|^{2} \sqrt{w^{2}-1}\left(1-2 w r+r^{2}\right) \\
& \left\{\left(1-\cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{\mathrm{v}} H_{+}^{2}(w)+\left(1+\cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{\mathrm{v}} H_{-}^{2}(w)\right. \\
& +4 \sin ^{2} \theta_{\ell} \cos ^{2} \theta_{\mathrm{v}} H_{0}^{2}-2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta_{\mathrm{v}} \cos 2 \chi H_{+}(w) H_{-}(w) \\
& -4 \sin \theta_{\ell}\left(1-\cos \theta_{\ell}\right) \sin \theta_{\mathrm{v}} \cos \theta_{\mathrm{v}} \cos \chi H_{+}(w) H_{0}(w) \\
& \left.+4 \sin \theta_{\ell}\left(1+\cos \theta_{\ell}\right) \sin \theta_{\mathrm{v}} \cos \theta_{\mathrm{v}} \cos \chi H_{-}(w)-H_{0}(w)\right\}(5)
\end{aligned}
$$

Belle angular analysis

- 4 dimensional binned analysis
- SM is assumed
- Simultaneous fit of form factors and Vcb (with one lattice input)

Introduction

- Helicity amplitudes in BGL

$$
z \equiv \frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}
$$

$$
\begin{aligned}
H_{ \pm}(w) & =f(w) \mp m_{B}\left|\mathbf{p}_{D^{*}}\right| g(w) \\
H_{0}(w) & =\frac{\mathcal{F}_{1}(w)}{\sqrt{q^{2}}}
\end{aligned}
$$

$$
r=m_{D^{*}} / m_{B}
$$

$$
g(z)=\frac{1}{P_{g}(z) \phi_{g}(z)} \sum_{n=0}^{N} a_{n}^{g} z^{n}, \quad f(z)=\frac{1}{P_{f}(z) \phi_{f}(z)} \sum_{n=0}^{N} a_{n}^{f} z^{n}, \quad \mathcal{F}_{1}(z)=\frac{1}{P_{\mathcal{F}_{1}}(z) \phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{N} a_{n}^{\mathcal{F}_{1}} z^{n}
$$

- Helicity amplitudes in CNL

$$
\begin{aligned}
& H_{ \pm}(w)=m_{B} \sqrt{r}(w+1) h_{A_{1}}(w)\left[1 \mp \sqrt{\frac{w-1}{w+1}} R_{1}(w)\right] \\
& H_{0}(w)=m_{B} \sqrt{r}(w+1) \frac{1-r}{\sqrt{q^{2}}} h_{A_{1}}(w)\left[1+\frac{w-1}{1-r}\left(1-R_{2}(w)\right)\right] \\
& h_{A_{1}}(w)=h_{A_{1}}(1)\left(1-8 \rho_{D^{*}}^{2}+\left(53 \rho_{D^{*}}^{2}-15\right) z^{2}-\left(231 \rho_{D^{*}}^{2}-91\right) z^{2}\right) \\
& R_{1}(w)=R_{1}(1)-0.12(w-1)+0.05(w-1)^{2} \\
& R_{2}(w)=R_{2}(1)+0.11(w-1)-0.06(w-1)^{2}
\end{aligned}
$$

New physics search with angular analysis

Is it possible to do new physics search like B->K* ||?

$$
\begin{gathered}
\mathcal{H}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{c b}\left[C_{V_{L}}^{l} O_{V_{L}}^{l}+C_{V_{R}}^{l} O_{V_{R}}^{l}+C_{S}^{l} O_{S}^{l}+C_{P}^{l} O_{P}^{l}+C_{T}^{l} O_{T}^{l}\right] \\
\begin{array}{c}
O_{V_{L}}^{l}=\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\ell}_{L} \gamma_{\mu} \nu_{\ell L}\right) \\
O_{V_{R}}^{l}=\left(\bar{c}_{R} \mu^{\mu} b_{R}\right)\left(\bar{\ell}_{\ell} \gamma_{\mu} \nu_{\ell L}\right) \\
O_{S}^{\ell}=\left(\bar{c}_{L} b_{R}\right)\left(\bar{\ell}_{R} \nu_{\ell L}\right) \\
O_{P}^{l}=\left(\bar{c} \gamma^{2} b\right)\left(\bar{\ell}_{R} \nu_{\ell L}\right) \\
O_{T}^{\ell}=\left(\bar{c}_{R} \sigma^{\prime \mu} b_{L}\right)\left(\bar{\ell}_{R} \sigma_{\mu \nu} \nu_{\ell L}\right) \\
\hline
\end{array}
\end{gathered}
$$

B->K* II angular analysis:

- 4 dimensional unbinned maximum likelihood analysis
- Simultaneous fit of form factors (nuisance parameters) and several Wilson coefficients

Example of the Right-Handed (RH) model

- Differential decay rate with RH current

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma\left(\bar{B} \rightarrow D^{*}(\rightarrow D \pi) \ell^{-} \bar{\nu}_{\ell}\right)}{\mathrm{d} w \mathrm{~d} \cos \theta_{V} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \chi}= & \frac{6 m_{B} m_{D^{*}}^{2}}{8(4 \pi)^{4}} \sqrt{w^{2}-1}\left(1-2 w r+r^{2}\right) G_{F}^{2}\left|V_{c b}\right|^{2} \times \mathcal{B}\left(D^{*} \rightarrow D \pi\right) \\
\times & \left\{J_{1 s} \sin ^{2} \theta_{V}+J_{1 c} \cos ^{2} \theta_{V}+\left(J_{2 s} \sin ^{2} \theta_{V}+J_{2 c} \cos ^{2} \theta_{V}\right) \cos 2 \theta_{\ell}\right. \\
& +J_{3} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \cos 2 \chi \\
& +J_{4} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \cos \chi+J_{5} \sin 2 \theta_{V} \sin \theta_{\ell} \cos \chi \\
& +\left(J_{6 s} \sin ^{2} \theta_{V}+J_{6 c} \cos ^{2} \theta_{V}\right) \cos \theta_{\ell} \\
& +J_{7} \sin 2 \theta_{V} \sin \theta_{\ell} \sin \chi+J_{8} \sin 2 \theta_{V} \sin 2 \theta_{\ell} \sin \chi \\
& \left.+J_{9} \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \sin 2 \chi\right\}
\end{aligned}
$$

$$
\begin{array}{rlrl}
J_{1 s} & =\frac{3}{2}\left(H_{+}^{2}+H_{-}^{2}\right)\left(\left|C_{V_{L}}\right|^{2}+\left|C_{V_{R}}\right|^{2}\right)-6 H_{+} H_{-} \operatorname{Re}\left[C_{V_{L}} C_{V_{R}}^{*}\right] & J_{5} & =-2\left(H_{+} H_{0}-H_{-} H_{0}\right)\left(\left|C_{V_{L}}\right|^{2}-\left|C_{V_{R}}\right|^{2}\right) \\
J_{1 c} & =2 H_{0}^{2}\left(\left|C_{V_{L}}\right|^{2}+\left|C_{V_{R}}\right|^{2}-2 \operatorname{Re}\left[C_{V_{L}} C_{V_{R}}^{*}\right]\right) & J_{6 s} & =-2\left(H_{+}^{2}-H_{-}^{2}\right)\left(\left|C_{V_{L}}\right|^{2}-\left|C_{V_{R}}\right|^{2}\right) \\
J_{2 s} & =\frac{1}{2}\left(H_{+}^{2}+H_{-}^{2}\right)\left(\left|C_{V_{L}}\right|^{2}+\left|C_{V_{R}}\right|^{2}\right)-2 H_{+} H_{-} \operatorname{Re}\left[C_{V_{L}} C_{V_{R}}^{*}\right] & J_{6 c}=0 \\
J_{2 c} & =-2 H_{0}^{2}\left(\left|C_{V_{L}}\right|^{2}+\left|C_{V_{R}}\right|^{2}-2 \operatorname{Re}\left[C_{V_{L}} C_{V_{R}}^{*}\right]\right) & J_{7}=0 \\
J_{3} & =-2 H_{+} H_{-}\left(\left|C_{V_{L}}\right|^{2}+\left|C_{V_{R}}\right|^{2}\right)+2\left(H_{+}^{2}+H_{-}^{2}\right) \operatorname{Re}\left[C_{V_{L}} C_{V_{R}}^{*}\right] & J_{8}=2\left(H_{+} H_{0}-H_{-} H_{0}\right) \operatorname{Im}\left[C_{V_{L}} C_{V_{R}}^{*}\right] \\
J_{4} & =\left(H_{+} H_{0}+H_{-} H_{0}\right)\left(\left|C_{V_{L}}\right|^{2}+\left|C_{V_{R}}\right|^{2}-2 \operatorname{Re}\left[C_{V_{L}} C_{V_{R}}^{*}\right]\right) & J_{9}=2\left(H_{+}^{2}-H_{-}^{2}\right) \operatorname{Im}\left[C_{V_{L}} C_{V_{R}}^{*}\right]
\end{array}
$$

Example of the Right-Handed (RH) model

- Unbinned maximum likelihood analysis

$$
\chi^{2}(\vec{v})=\chi_{\text {angle }}^{2}(\vec{v})+\chi_{w-\text { bin }}^{2}(\vec{v})
$$

ZR. Huang, C.D. Lu, R.T.Tang, E.K. Phys.Rev.D 105 (2022) I, 013010
$\vec{v}:$ Fit parameters (FF, CVr etc...)

- Angular part:

$$
\chi_{\text {angle }}^{2}(\vec{v})=\sum_{w \text {-bin }=1}^{10}\left[\sum_{i j} N_{\text {event }} \hat{V}_{i j}^{-1}\left(\left\langle g_{i}\right\rangle^{\exp }-\left\langle g_{i}^{\text {th }}(\vec{v})\right\rangle\right)\left(\left\langle g_{j}\right\rangle^{\exp }-\left\langle g_{j}^{\text {th }}(\vec{v})\right\rangle\right)\right]_{w-\text { bin }}
$$

Normalised PDF

$$
\begin{align*}
\hat{f}_{\langle\vec{g}\rangle}\left(\cos \theta_{V}, \cos \theta_{\ell}, \chi\right)= & \frac{9 \pi}{8} \times\left\{\frac{1}{6}\left(1-3\left\langle g_{1 c}\right\rangle+2\left\langle g_{2 s}\right\rangle+\left\langle g_{2 c}\right\rangle\right) \sin ^{2} \theta_{V}+\left\langle g_{1 c}\right\rangle \cos ^{2} \theta_{V}\right. \\
& \left.+\left\langle g_{2 s}\right\rangle \sin ^{2} \theta_{V}+\left\langle g_{2 c}\right\rangle \cos ^{2} \theta_{V}\right) \cos 2 \theta_{\ell} \\
& +\left\langle g_{3}\right\rangle \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \cos 2 \chi \\
& +\left\langle g_{4}\right\rangle \sin 2 \theta_{V} \sin 2 \theta_{\ell} \cos \chi+\left\langle g_{5}\right\rangle \sin 2 \theta_{V} \sin \theta_{\ell} \cos \chi \\
& +\left(\left\langle g_{6 s}\right\rangle \sin ^{2} \theta_{V}+\left\langle g_{6 c}\right\rangle \cos ^{2} \theta_{V}\right) \cos \theta_{\ell} \\
& +\left\langle g_{7}\right\rangle \sin 2 \theta_{V} \sin \theta_{\ell} \sin \chi+\left\langle g_{8}\right\rangle \sin 2 \theta_{V} \sin 2 \theta_{\ell} \sin \chi \\
& \left.+\left\langle g_{9}\right\rangle \sin ^{2} \theta_{V} \sin ^{2} \theta_{\ell} \sin 2 \chi\right\} \tag{46}
\end{align*}
$$

Example of the Right-Handed (RH) model

- Unbinned maximum likelihood analysis

$$
\chi^{2}(\vec{v})=\chi_{\text {angle }}^{2}(\vec{v})+\chi_{w-\text { bin }}^{2}(\vec{v})
$$

ZR. Huang, C.D. Lu, R.T.Tang, E.K. Phys.Rev.D 105 (2022) I, OI3010
\vec{v} : Fit parameters (FF, CVr etc...)

- $N_{\text {event }}$ part:

$$
\chi_{w-\mathrm{bin}}^{2}(\vec{v})=\sum_{w-\mathrm{bin}=1}^{10} \frac{\left([N]_{w_{\mathrm{bin}}}-\alpha\langle\Gamma\rangle_{w-\mathrm{bin}}\right)^{2}}{[N]_{w-\mathrm{bin}}}
$$

$$
\langle\Gamma\rangle_{w-\mathrm{bin}}=\frac{6 m_{B} m_{D^{*}}^{2}}{8(4 \pi)^{4}} G_{F}^{2}\left|V_{c b}\right|^{2} \times \mathcal{B}\left(D^{*} \rightarrow D \pi\right) \frac{8}{9 \pi}\left\{6\left\langle J_{1 s}^{\prime}\right\rangle_{w-\mathrm{bin}}+3\left\langle J_{1 c}^{\prime}\right\rangle_{w-\mathrm{bin}}-2\left\langle J_{2 s}^{\prime}\right\rangle_{w-\mathrm{bin}}-\left\langle J_{2 c}^{\prime}\right\rangle_{w-\mathrm{bin}}\right\}
$$

$$
\alpha \equiv \frac{4 N_{B \bar{B}}}{1+f_{+0}} \tau_{B^{0}} \times \epsilon \mathcal{B}\left(D^{*} \rightarrow D \pi\right) \mathcal{B}(D \rightarrow K \pi)
$$

Necessity of form factor inputs to fit $\mathrm{C}_{V R}$

- Branching ratio

$$
\mathcal{C}_{w} \equiv \sqrt{w^{2}-1}\left(1-2 w r+r^{2}\right)
$$

$$
\begin{aligned}
& \operatorname{BR}\left(B \rightarrow D^{*} \ell \nu\right) \\
& \propto G_{F}\left|V_{c b}\right|^{2} \int d w \mathcal{C}_{w}\left[\left(2 f(w)^{2}+\frac{\mathcal{F}_{1}(w)^{2}}{q^{2}}\right)\left|C_{V_{L}}-C_{V_{R}}\right|^{2}+2 g(w)^{2} m_{B}^{2}\left|\mathbf{p}_{\mathbf{D}}\right|^{2}\left|C_{V_{L}}+C_{V_{R}}\right|^{2}\right]
\end{aligned}
$$

Vcb and form factor parameters have to be fixed to get $C_{V R}$

- Forward-backward asymmetry

$$
\begin{aligned}
\mathcal{A}_{\theta_{\ell}} & \equiv \frac{\int_{0}^{1} d \Gamma\left(\cos \theta_{\ell}\right) \mathrm{d} \cos \theta_{\ell}-\int_{-1}^{0} d \Gamma\left(\cos \theta_{\ell}\right) \mathrm{d} \cos \theta_{\ell}}{\int_{0}^{1} d \Gamma\left(\cos \theta_{\ell}\right) \mathrm{d} \cos \theta_{\ell}+\int_{-1}^{0} d \Gamma\left(\cos \theta_{\ell}\right) \mathrm{d} \cos \theta_{\ell}} \\
& \propto \frac{\int d w \mathcal{C}_{w}\left[f(w) g(w) m_{B}\left|\mathbf{p}_{\mathbf{D}}\right|\left(\left|C_{V_{L}}\right|^{2}-\left|C_{V_{R}}\right|^{2}\right)\right]}{\int d w \mathcal{C}_{w}\left[\left(2 f(w)^{2}+\frac{\mathcal{F}_{1}(w)^{2}}{q^{2}}\right)\left|C_{V_{L}}-C_{V_{R}}\right|^{2}+2 g(w)^{2} m_{B}^{2}\left|\mathbf{p}_{\mathbf{D}}\right|^{2}\left|C_{V_{L}}+C_{V_{R}}\right|^{2}\right]}
\end{aligned}
$$

Form factor parameters have to be fixed to get CVR

Impact of the new lattice data

Combining Belle \& lattice results

D. Ferlewicz, Ph. Urquijo, E.Waheed arXiv:2008.0934I

- Assuming the SM, we fit the Belle data and lattice data simultaneously.

$$
\chi_{\mathrm{tot}}^{2}(\vec{v})=\chi_{\exp }^{2}(\vec{v})+\chi_{\mathrm{latt}}^{2}\left(\overrightarrow{v_{0}}\right)
$$

$$
\begin{gathered}
\vec{v}=\left(a_{i}, b_{i}, c_{i}, d_{i}, V_{c b}\right) \\
\vec{v}_{0}=\left(f, g, \mathcal{F}_{1}, \mathcal{F}_{2}\right)
\end{gathered}
$$

ai, bi, ... : BGL parameters

The latest Lattice result on form factors

Fermilab-MILK arxXiv.2 105.14019

JLQCD	arXiv. 2304.xxxx
HPQCD	arXiv: 2304.03137

- Lattice QCD groups determined, all form factors (FF) necessary to describe the B->D* I nu decay, including their w dependence.
- In lattice QCD method, the w dependence of FF is obtained by chiral extrapolation. For example, the Fermilab group provided the FF at different point of w and correlation matrix.

$$
\chi_{\text {latt }}^{2}\left(\overrightarrow{v_{0}}\right)=\left(\vec{v}_{0}-\vec{v}_{0}^{\text {latt }}\right) V^{-1}\left(\vec{v}_{0}-\vec{v}_{0}^{\text {latt }}\right)^{T}
$$

TABLE XX: Synthetic data of the chiral-continuum extrapolation for the form factors used in the z expansion with their correlation matrix.

	Value	Correlation Matrix											
		$f(1.03)$	$g(1.03)$	$\mathcal{F}_{1}(1.03)$	$\mathcal{F}_{2}(1.03)$	$f(1.10)$	$g(1.10)$	$\mathcal{F}_{1}(1.10)$	$\mathcal{F}_{2}(1.10)$	$f(1.17)$	$g(1.17)$	$\mathcal{F}_{1}(1.17)$	$\mathcal{F}_{2}(1.17)$
$f(1.03)$	5.77(11)	1.0000	0.1156	0.9885	0.6710	0.9247	0.1029	0.8596	0.6518	0.5743	0.0723	0.5229	0.4407
$g(1.03)$	0.371(14)	0.1156	1.0000	0.1304	0.3489	0.1245	0.9354	0.1564	0.3253	0.1057	0.6819	0.1373	0.2375
$\mathcal{F}_{1}(1.03)$	18.73(38)	0.9885	0.1304	1.0000	0.7304	0.9084	0.1153	0.9065	0.7204	0.5616	0.0816	0.5753	0.4991
$\mathcal{F}_{2}(1.03)$	2.175 (70)	0.6710	0.3489	0.7304	1.0000	0.6024	0.3259	0.7364	0.9346	0.3584	0.2449	0.4923	0.6078
$f(1.10)$	5.49 (12)	0.9247	0.1245	0.9084	0.6024	1.0000	0.1781	0.9031	0.6784	0.7973	0.2001	0.6881	0.5825
$g(1.10)$	0.330(14)	0.1029	0.9354	0.1153	0.3259	0.1781	1.0000	0.1954	0.3664	0.2416	0.8429	0.2442	0.3480
$\mathcal{F}_{1}(1.10)$	17.52(45)	0.8596	0.1564	0.9065	0.7364	0.9031	0.1954	1.0000	0.8430	0.6986	0.2002	0.8116	0.7270
$\mathcal{F}_{2}(1.10)$	1.912(69)	0.6518	0.3253	0.7204	0.9346	0.6784	0.3664	0.8430	1.0000	0.5238	0.3358	0.6981	0.7960
$f(1.17)$	5.23(17)	0.5743	0.1057	0.5616	0.3584	0.7973	0.2416	0.6986	0.5238	1.0000	0.3769	0.8364	0.7089
$g(1.17)$	0.290(17)	0.0723	0.6819	0.0816	0.2449	0.2001	0.8429	0.2002	0.3358	0.3769	1.0000	0.3571	0.4456
$\mathcal{F}_{1}(1.17)$	16.46(70)	0.5229	0.1373	0.5753	0.4923	0.6881	0.2442	0.8116	0.6981	0.8364	0.3571	1.0000	0.9218
$\mathcal{F}_{2}(1.17)$	1.692(91)	0.4407	0.2375	0.4991	0.6078	0.5825	0.3480	0.7270	0.7960	0.7089	0.4456	0.9218	1.0000

Comparison of two Lattice results ${ }^{\text {Dremminaray }}$

\square Fermilab-MILK JLQCD

- Using the lattice values for form factors at low w, we obtain the BGL parameters (e.g. up to quadratic term).
- As a result, the higher w regions are less constrained.

Without unitarity bound

Comparison of two Lattice results ${ }^{\text {Dremminan }}$

\square Fermilab-MILK JLQCD

- Using the lattice values for form factors at low w, we obtain the BGL parameters (e.g. up to quadratic term).
- As a result, the higher w regions are less constrained.

Comparison of two Lattice results ${ }^{\text {Dremminaray }}$

\square Fermilab-MILK
\square JLQCD

- Using the lattice values for form factors at low w, we obtain the BGL parameters (e.g. up to quadratic term).
- As a result, the higher w regions are less constrained.

There are small differences between two results but within errors.

Lattice + Belle combined results ${ }^{\text {Dremiminanay }}$

Toy study of the unbinned analysis

Toy study

1.Generate "fake-data" with the Belle '18 fitted parameters. 2. Fit the fake-data with the theory formula including new physics parameters together with the lattice data

$$
\begin{gathered}
\mathcal{H}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{c b}\left[C_{V_{L}}^{l} O_{V_{L}}^{l}+C_{V_{R}}^{l} O_{V_{R}}^{l}+C_{S}^{l} O_{S}^{l}+C_{P}^{l} O_{P}^{l}+C_{T}^{l} O_{T}^{l}\right] \\
\begin{aligned}
O_{V_{L}}^{\ell} & =\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\ell}_{L} \gamma_{\mu} \nu_{\ell L}\right) \\
O_{V_{R}}^{l} & =\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\ell}_{L} \gamma_{\mu} \nu_{\ell L}\right) \\
O_{S}^{e} & =\left(\bar{c}_{L} b_{R}\right)\left(\bar{\ell}_{R} \nu_{\ell L}\right) \\
O_{P}^{\ell} & =\left(\bar{c} \gamma^{5} b\right)\left(\bar{\ell}_{R} \nu_{\ell L}\right) \\
O_{T}^{\ell} & =\left(\bar{c}_{R} \sigma^{\mu \nu} b_{L}\right)\left(\bar{\ell}_{R} \sigma_{\mu \nu} \nu_{\ell L}\right)
\end{aligned}
\end{gathered}
$$

Fake data

SM fit

Z.R. Huang, C.D. Lu, R.T.Tang, E.K. Phys.Rev.D 105 (2022) I, 013010

Reproducing Belle study

$$
\begin{gathered}
\left(\tilde{a}_{g}^{0,1, \cdots}, \tilde{a}_{f}^{0,1, \cdots}, \tilde{a}_{\mathcal{F}_{1}}\right)=\alpha V_{c b}\left(a_{g}^{0,1, \cdots}, a_{f}^{0,1, \cdots}, a_{\mathcal{F}_{1}}\right) \leftarrow \text { normalisation } \\
a_{0}^{f}=2 m_{B} \sqrt{r} P_{f}(0) \phi_{f}(0) h_{A_{1}}(1) \\
h_{A_{1}}(1)=0.906 \pm 0.013 \quad \leftarrow \text { lattice input } \\
\vec{v}=\left(\tilde{a}_{f}^{0}, \tilde{a}_{f}^{1}, \tilde{a}_{\mathcal{F}_{1}}, \tilde{a}_{\mathcal{F}_{2}}, \tilde{a}_{g}^{0}\right)=(0.051,0.066,0.027,-0.329,0.093) \times 10^{-2} \\
\sigma_{\vec{v}}=(0.0004,0.016,0.006,0.119,0.001) \times 10^{-2} \\
\rho_{\vec{v}}=\left(\begin{array}{ccccc}
1 . & -0.816 & -0.73 & 0.586 & -0.002 \\
-0.816 & 1 . & 0.525 & -0.415 & -0.046 \\
-0.73 & 0.525 & 1 . & -0.969 & -0.004 \\
0.586 & -0.415 & -0.969 & 1 . & 0.003 \\
-0.002 & -0.046 & -0.004 & 0.003 & 1 .
\end{array}\right) \quad \begin{array}{l}
\text { Statistical error to the } \\
\text { form factors are 20-80\% } \\
V_{c b}=(38.7 \pm 0.6) \times 10^{-3} \\
\text { better than the Belle study } \\
\text { (only), probably due to } \\
\text { the unbanned analysis. }
\end{array}
\end{gathered}
$$

Right-Handed fit

Previous study (before lattice result)

$$
\begin{gathered}
a_{0}^{f}=0.0132 \pm 0.0002 \leftarrow \text { lattice input } \\
a_{g}^{0}=0.0240 \pm 0.0007 \leftarrow \text { Belle input }
\end{gathered}
$$

We use only angular dependence and assume $C_{V R}$ is real

$$
\begin{gathered}
\vec{v}=\left(a_{f}^{0}, a_{f}^{1}, a_{\mathcal{F}_{1}}, a_{\mathcal{F}_{2}}, a_{g}^{0}, C_{V_{R}}\right)=(0.0132,0.0169,0.007,-0.0852,0.0241,0.0024) \\
\sigma_{\vec{v}}=(0.0002,0.0173,0.0041,0.0556,0.0005,0.0234)
\end{gathered}
$$

With the current statistic, Cvr can be measured at $\sim 3 \%$ precision (stat only)!

Right-Handed fit including lattice data

T. Kappor, Z.R. Huang, E.K. arXive:2304.xxxxx

We use only angular dependence and assume $C_{V R}$ is real

The larger $a_{g o}$ value observed by Fermilab/MILK comparing to the Belle measurement could be compensated by the negative $C_{V R}$ in RH model.

Right-Handed fit including lattice data

We use only angular dependence and assume $C_{V R}$ is real

T. Kappor, Z.R. Huang, E.K. arXive:2304.xxxxx

Conclusions

- Belle has been studying the angular distribution to constrain the form factors within SM.
- There are now three lattice QCD results on the B->D* Form Factors (HPQCD includes the tensor FF!).
- Thus, we are ready to move to BSM fit!
- We performed toy study of the unbanned maximum likelihood method of Belle data to RH model including the lattice data.
- We showed that the observed small tension on the vector FF could be compensated by the RH contribution.

