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FIG. 5. Results of the fit with the CLN form factor parameterization. The results from the SVD1 and SVD2 samples are added
together. The electron modes are on the left and muon modes on the right. The points with error bars are the on-resonance
data. Where not shown, the uncertainties are smaller than the black markers. The histograms are, from top to bottom, the
signal component, B ! D⇤⇤ background, signal correlated background, uncorrelated background, fake ` component, fake D⇤

component and continuum.

defined as

Covij = ⇢
stat
ij �

stat
i �

stat
j + ⇢

sys
ij �

sys
i �

sys
j . (22)

As we provide only the background subtracted di↵eren-

tial distributions, the expected yield in Eq. 18 becomes

N
exp.
i =

40X

j=1

(Rij✏jN
theory
j ). (23)

The distributions in w, cos ✓`, cos ✓v and � are divided
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FIG. 5. Results of the fit with the CLN form factor parameterization. The results from the SVD1 and SVD2 samples are added
together. The electron modes are on the left and muon modes on the right. The points with error bars are the on-resonance
data. Where not shown, the uncertainties are smaller than the black markers. The histograms are, from top to bottom, the
signal component, B ! D⇤⇤ background, signal correlated background, uncorrelated background, fake ` component, fake D⇤

component and continuum.

defined as

Covij = ⇢
stat
ij �

stat
i �

stat
j + ⇢

sys
ij �

sys
i �

sys
j . (22)

As we provide only the background subtracted di↵eren-

tial distributions, the expected yield in Eq. 18 becomes

N
exp.
i =

40X

j=1

(Rij✏jN
theory
j ). (23)

The distributions in w, cos ✓`, cos ✓v and � are divided

•4 dimensional binned analysis 
•SM is assumed 
•Simultaneous fit of form factors 

and Vcb (with one lattice input)

5

the invariant mass squared of the lepton-neutrino system.
The range of w is restricted by the allowed values of q

2

such that the minimum value of q
2
min = m

2
` ⇡ 0 GeV2

corresponds to the maximum value of w,

wmax =
m

2
B + m

2
D⇤

2mBmD⇤
. (4)

The three angular variables are depicted in Fig. 3 and
are defined as follows:

• ✓`: the angle between the direction of the lepton
and the direction opposite the B meson in the vir-
tual W rest frame.

• ✓v: the angle between the direction of the D
0 meson

and the direction opposite the B meson in the D
⇤

rest frame.

• �: the angle between the two planes formed by the
decays of the W and the D

⇤ meson, defined in the
rest frame of the B

0 meson.
18
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Figure 2.3: [B ! D
⇤
`⌫ decay geometry] Geometry of B ! D

⇤
`⌫ decays.

The di�erential decay rate is given by

d�(B�D⇤`�)
dwdcos�V dcos�`d� =

3G2
F

4(4�)4 |Vcb|
2mBm2

D⇤

p
w2 � 1(1 � 2wr + r2)⇥

[(1 � cos�`)2sin2�V |H+(w)|2

+(1 + cos�`)2sin2�V |H�(w)|2

+4sin2�`cos2�V |H0(w)|2

�4sin�`(1 � cos�`)sin�V cos�V cos�H+(w)H0(w)

+4sin�`(1 + cos�`)sin�V cos�V cos�H�(w)H0(w)

�2sin2�`sin
2�V cos2�H+(w)H�(w)]

where Hi(w) are called the helicity form factors. These form factors are related to

another set of form factors, hV (w), hA1(w), hA2(w) and hA3(w), as follows.

Hi = �mB
R(1 � r2)(w + 1)

2
p

1 � 2wr + r2
hA1(w) �Hi(w) (2.19)

where �Hi(w) are given by

�H±(w) =
�

1�2wr+r2

1�r

�
1 ⌥

�
w�1
w+1R1(w)

�

�H0(w) = 1 + w�1
1�r (1 � R2(w))

(2.20)

FIG. 3. Definition of the angles ✓`, ✓v and � for the decay
B0 ! D⇤�`+⌫`.

IV. SEMILEPTONIC DECAYS

In the massless lepton limit, the B
0

! D
⇤�

`
+
⌫` dif-

ferential decay rate is given by [4]

d�(B0
! D

⇤�
`
+
⌫`)

dwd cos ✓`d cos ✓vd�
=

⌘
2
EW3mBm

2
D⇤

4(4⇡)2
G

2
F |Vcb|

2
p

w2 � 1(1 � 2wr + r
2)

�
(1 � cos ✓`)

2 sin2
✓vH

2
+(w) + (1 + cos ✓`)

2 sin2
✓vH

2
�(w)

+4 sin2
✓` cos2 ✓vH

2
0 � 2 sin2

✓` sin2
✓v cos 2�H+(w)H�(w)

�4 sin ✓`(1 � cos ✓`) sin ✓v cos ✓v cos �H+(w)H0(w)

+4 sin ✓`(1 + cos ✓`) sin ✓v cos ✓v cos �H�(w) � H0(w)} ,(5)

where r = mD⇤/mB , GF = (1.6637 ± 0.00001) ⇥

10�5~c2GeV�2 and ⌘EW is a small electroweak correc-
tion (Calculated to be 1.006 in Ref. [19]).

A. The CLN Parameterization

The helicity amplitudes H±,0(w) in Eq. 5 are given
in terms of three form factors. In the CLN parameter-
ization [4] one writes these helicity amplitudes in terms
of the form factor hA1(w) and the form factor ratios
R1,2(w). They are defined as

hA1(w) = hA1(1)
⇥
1 � 8⇢

2
z + (53⇢

2
� 15)z2

�(231⇢
2

� 91)z3
⇤
,

R1(w) = R1(1) � 0.12(w � 1) + 0.05(w � 1)2,

R2(w) = R2(1) � 0.11(w � 1) � 0.06(w � 1)2, (6)

where z = (
p

w + 1 �
p

2)/(
p

w + 1 +
p

2). In addition
to the form factor normalization, there are three inde-
pendent parameters ⇢

2, R1(1) and R2(1). The values of
these parameters are not calculated theoretically instead
they are extracted by an analysis of experimental data.

B. The BGL Parameterization

A more general parameterization comes from BGL [5],
recently used in Refs. [20, 21]. In their approach, the
helicity amplitudes Hi are given by

H0(w) = F1(w)/
p

q2 ,

H±(w) = f(w) ⌥ mBmD⇤

p
w2 � 1g(w) . (7)

The three BGL form factors can be written as a series
in powers of z,

f(z) =
1

P1+(z)�f (z)

1X

n=0

a
f
nz

n
,

F1(z) =
1

P1+(z)�F1(z)

1X

n=0

a
F1
n z

n
,

g(z) =
1

P1�(z)�g(z)

1X

n=0

a
g
nz

n
. (8)

In these equations the Blaschke factors, P1±, are given
by

P1±(z) =
nY

P=1

z � zP

1 � zzP
, (9)

where zP is defined as

zP =

p
t+ � m

2
P �

p
t+ � t�p

t+ � m
2
P +

p
t+ � t�

, (10)

while t± = (mB ± mD⇤)2 and mP denotes the masses of
the B

⇤
c resonances. The product is extended to include

all the Bc resonances below the B �D
⇤ threshold of 7.29

GeV/c2 with the appropriate quantum numbers (1+ for
f(w) and F1(w), and 1� for g(w)). We use the the Bc

resonances listed in Table I. The Bc resonances also enter

2 Di↵erential decay rate

We write contributions from the left-handed current, the right-handed current and the
interference term in terms of the helicity amplitudes:

d�(B̄ ! D
⇤(! D⇡) `� ⌫̄`)

dw d cos ✓V d cos ✓` d�
=

6mBm
2
D⇤

8(4⇡)4

p
w2 � 1(1� 2w r + r

2)G2
F |Vcb|2 ⇥ B(D⇤ ! D⇡)

⇥
n
J1s sin

2
✓V + J1c cos

2
✓V + (J2s sin

2
✓V + J2c cos

2
✓V ) cos 2✓`

+J3 sin
2
✓V sin2 ✓` cos 2�

+J4 sin 2✓V sin 2✓` cos�+ J5 sin 2✓V sin ✓` cos�

+(J6s sin
2
✓V + J6c cos

2
✓V ) cos ✓`

+J7 sin 2✓V sin ✓` sin�+ J8 sin 2✓V sin 2✓` sin�

+J9 sin
2
✓V sin2 ✓` sin 2�

o
(20)

where the Ji(i = 1 ⇠ 9) is written by the helicity amplitude and the Wilson coe�cients of
left- and right-handed currents by

J1s =
3

2
(H2

+ +H
2
�)(|CVL |2 + |CVR |2)� 6H+H�Re[CVLC

⇤
VR

]

J1c = 2H2
0 (|CVL |2 + |CVR |2 � 2Re[CVLC

⇤
VR

])

J2s =
1

2
(H2

+ +H
2
�)(|CVL |2 + |CVR |2)� 2H+H�Re[CVLC

⇤
VR

]

J2c = �2H2
0 (|CVL |2 + |CVR |2 � 2Re[CVLC

⇤
VR

])

J3 = �2H+H�(|CVL |2 + |CVR |2) + 2(H2
+ +H

2
�)Re[CVLC

⇤
VR

]

J4 = (H+H0 +H�H0)(|CVL |2 + |CVR |2 � 2Re[CVLC
⇤
VR

])

J5 = �2(H+H0 �H�H0)(|CVL |2 � |CVR |2)
J6s = �2(H2

+ �H
2
�)(|CVL |2 � |CVR |2)

J6c = 0

J7 = 0

J8 = 2(H+H0 �H�H0)Im[CVLC
⇤
VR

]

J9 = 2(H2
+ �H

2
�)Im[CVLC

⇤
VR

]

For the (B ! D̄
⇤(! D̄⇡) `+ ⌫`) decay, all the terms are the same except, CVL,R becomes

its complex conjugate C
⇤
VL,R

. This does not a↵ect any term but J8 and J9, which flip the
sign. Indeed, these two terms are triple-product observable, which can generate true and
false CP violation (the former originates from the CP violating phase and the latter from
the CP conserving phase, such as strong interaction). Only the true CP violation can
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i /

r

D
eVW D*

B

el

l

z

where we use ✏0123 = 1.
The non-zero helicity amplitudes Ht ⌘ H

0
t , H± ⌘ H

±
± , Ĥt ⌘ Ĥ

0
t and Ĥ± ⌘ Ĥ

±
± of

left-handed and right-handed currents satisfy the following relations using form factors in
Eq. (5):

H±(q
2) = �Ĥ⌥(q

2) = �(mB +mD⇤)A1(q
2)⌥

p
�D⇤(q2)

mB +mD⇤
V (q2) , (6)

H0(q
2) = �Ĥ0(q

2) = �mB +mD⇤

2mD⇤
p

q2

⇥
(m2

B �m
2
D⇤ � q

2)A1(q
2)

� �D⇤(q2)

(mB +mD⇤)2
A2(q

2)

�
.

(7)

In the following, we use w variable instead of q2,

w =
m

2
B +m

2
D⇤ � q

2

2m2
BmD⇤

such that |pD⇤ | = mD⇤
p
w2 � 1 and w = 1 corresponds to the zero-recoil momentum.

1.1 CNL parameterisation of the form factors

In the CNL parameterisation, the three form factors (including their momentum depen-
dence) are written by four parameters (hA1(1), ⇢

2
D⇤ , R1(1), R2(1)):

A1(q
2) =

w + 1

2
r
0
hA1(w), A2(q

2) =
R2(w)

r0
hA1(w), V (q2) =

R1(w)

r0
hA1(w) (8)

where r
0 = 2

p
mB,D⇤/(mB +mD⇤) with

hA1(w) = hA1(1)(1� 8⇢2D⇤ + (53⇢2D⇤ � 15)z2 � (231⇢2D⇤ � 91)z2) (9)

R1(w) = R1(1)� 0.12(w � 1) + 0.05(w � 1)2 (10)

R2(w) = R2(1) + 0.11(w � 1)� 0.06(w � 1)2 (11)

where z = (
p
w + 1 �

p
2)/(

p
w + 1 +

p
2). By using this parameterisation the helicity

amplitudes are written as:

H±(w) = mB
p
r(w + 1)hA1(w)

"
1⌥

r
w � 1

w + 1
R1(w)

#
(12)

H0(w) = mB
p
r(w + 1)

1� rp
q2

hA1(w)


1 +

w � 1

1� r
(1�R2(w))

�
(13)

where r = mD⇤/mB.
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such that

H±(w) = f(w)⌥mB|pD⇤ |g(w) (18)

H0(w) =
F1(w)p

q2
(19)

The BGL parameters are the expansion in terms of the z variable

g(z) =
1

Pg(z)�g(z)

NX

n=0

a
g
nz

n
, f(z) =

1

Pf (z)�f (z)

NX

n=0

a
f
nz

n
, F1(z) =

1

PF1(z)�F1(z)

NX

n=0

a
F1
n z

n

(20)
where

z ⌘
p
w + 1�

p
2p

w + 1 +
p
2

We give the full expression of Pg,f,F1 and �g,f,F1 in the appendix.
The parameters f and F1 are not completely independent and we have

F1(0) = (mB �mD⇤)f(0)

which leads a relation of their leading order coe�cients

a
F1
0 = (mB �mD⇤)

PF1(0)�F1(0)

Pf (0)�f (0)
a
f
0

We quote the helicity amplitudes at zero-recoil for later use:

H+(1) = H�(1) = H0(1) =
1

Pf (0)�f (0)
a
f
0 (21)

5
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•Helicity amplitudes in BGL
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2
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2
r
0
hA1(w), A2(q

2) =
R2(w)

r0
hA1(w), V (q2) =

R1(w)

r0
hA1(w) (8)
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p
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p
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p
r(w + 1)hA1(w)

"
1⌥

r
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w + 1
R1(w)

#
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H0(w) = mB
p
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1� rp
q2

hA1(w)
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1 +

w � 1

1� r
(1�R2(w))

�
(13)
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New physics search with angular analysis

Is it possible to do new physics search like B->K* ll?

Unbinned analysis of Bd ! D⇤l⌫ with Lattice QCD
data

Tejhas Kapoor∗ and Emi Kou†

Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

1 E↵ective Hamiltonian

Here, note that we can write the hamiltonian as di↵erent combinations. For example, we
can right as Left and Right handed Vector currents or Vector and Axial-vector currents..
We choose the former as left handed current is in SM, while RH is NP, therefore, clearly
distinguishing between the two. However, we choose Scalar and Pseudoscalar terms in-
stead of Left and Right handed scalar currents, as for B ! D⇤ matrix element vanishes
for scalar current, and thus we only have one Wilson coe�cient (pseudoscalar) to fit.
The e↵ective hamiltonian that we use is then given by (assuming no right handed neutrino
is present)

Heff =
4GF
p
2
Vcb[C

l
VL
Ol

VL
+ C l

VR
Ol

VR
+ C l

SO
l
S + C l

PO
l
P + C l

TO
l
T ] (1)

where we have the following five operators:

O`
VL

= [c̄�µ(1� �5)b][¯̀�µ(1� �5)⌫`]

O`
VR

= [c̄�µ(1 + �5)b][¯̀�µ(1 + �5)⌫`]

O`
S = [c̄b][¯̀(1� �5)⌫`]

O`
P = [c̄�5b][¯̀(1� �5)⌫`]

O`
T = [c̄�µ⌫(1� �5)b][¯̀�µ⌫(1� �5)⌫`]

(2)

or written in other way (with quark helicities), they are given as

O`
VL

= (c̄L�
µbL)(¯̀L�µ⌫`L)

O`
VR

= (c̄R�
µbR)(¯̀L�µ⌫`L)

O`
S = (c̄LbR)(¯̀R⌫`L)

O`
P = (c̄�5b)(¯̀R⌫`L)

O`
T = (c̄R�

µ⌫bL)(¯̀R�µ⌫⌫`L)

(3)

∗tejhas.kapoor@ijclab.in2p3.fr
†emi.kou@ijclab.in2p3.fr
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1B->K* ll angular analysis: 
•4 dimensional unbinned maximum likelihood analysis 
•Simultaneous fit of form factors (nuisance parameters) and 

several Wilson coefficients
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Example of the Right-Handed (RH) model
•Differential decay rate with RH current

2 Di↵erential decay rate

We write contributions from the left-handed current, the right-handed current and the
interference term in terms of the helicity amplitudes:

d�(B̄ ! D
⇤(! D⇡) `� ⌫̄`)

dw d cos ✓V d cos ✓` d�
=

6mBm
2
D⇤

8(4⇡)4

p
w2 � 1(1� 2w r + r

2)G2
F |Vcb|2 ⇥ B(D⇤ ! D⇡)

⇥
n
J1s sin

2
✓V + J1c cos

2
✓V + (J2s sin

2
✓V + J2c cos

2
✓V ) cos 2✓`

+J3 sin
2
✓V sin2 ✓` cos 2�

+J4 sin 2✓V sin 2✓` cos�+ J5 sin 2✓V sin ✓` cos�

+(J6s sin
2
✓V + J6c cos

2
✓V ) cos ✓`

+J7 sin 2✓V sin ✓` sin�+ J8 sin 2✓V sin 2✓` sin�

+J9 sin
2
✓V sin2 ✓` sin 2�

o
(22)

where the Ji(i = 1 ⇠ 9) is written by the helicity amplitude and the Wilson coe�cients of
left- and right-handed currents by

J1s =
3

2
(H2

+ +H
2
�)(|CVL |2 + |CVR |2)� 6H+H�Re[CVLC

⇤
VR

]

J1c = 2H2
0 (|CVL |2 + |CVR |2 � 2Re[CVLC

⇤
VR

])

J2s =
1

2
(H2

+ +H
2
�)(|CVL |2 + |CVR |2)� 2H+H�Re[CVLC

⇤
VR

]

J2c = �2H2
0 (|CVL |2 + |CVR |2 � 2Re[CVLC

⇤
VR

])

J3 = �2H+H�(|CVL |2 + |CVR |2) + 2(H2
+ +H

2
�)Re[CVLC

⇤
VR

]

J4 = (H+H0 +H�H0)(|CVL |2 + |CVR |2 � 2Re[CVLC
⇤
VR

])

J5 = �2(H+H0 �H�H0)(|CVL |2 � |CVR |2)
J6s = �2(H2

+ �H
2
�)(|CVL |2 � |CVR |2)

J6c = 0

J7 = 0

J8 = 2(H+H0 �H�H0)Im[CVLC
⇤
VR

]

J9 = 2(H2
+ �H

2
�)Im[CVLC

⇤
VR

]

For the (B ! D̄
⇤(! D̄⇡) `+ ⌫`) decay, all the terms are the same except, CVL,R becomes

its complex conjugate C
⇤
VL,R

. This does not a↵ect any term but J8 and J9, which flip the
sign. Indeed, these two terms are triple-product observable, which can generate true and
false CP violation (the former originates from the CP violating phase and the latter from
the CP conserving phase, such as strong interaction). Only the true CP violation can
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Example of the Right-Handed (RH) model
•Unbinned maximum likelihood analysis 

ZR. Huang, C.D. Lu, R.T. Tang, E.K.
Phys.Rev.D 105 (2022) 1, 013010

5 Fitting procedure

Even though, the obtained error matrix of hgii represents only an ideal situation, we
attempt to fit the theoretical parameters using it for demonstration. The theoretical pa-
rameters ~v, which is ~v = (hA1(1), ⇢

2
D⇤ , R1(1), R2(1), Vcb) for CLN parameterisation and

~v = (a0,1,···g , a
0,1,···
f , a

0,1,···
F1

, Vcb) for BGL parameterisation are fitted by minimising the fol-

lowing �
2:

�
2(~v) = �

2
angle(~v) + �

2
w�bin(~v) + �

2
lattice(~v) (64)

where �2
angle(~v) takes into account the angular distribution and �

2
w�bin(~v) does the w depen-

dence. The �
2
lattice is the constraint from the lattice QCD computation, which we explain

more in detail below.
The first term can be given as

�
2
angle(~v) =

10X

w�bin=1

hX

ij

NeventV̂
�1
ij (hgiiexp � hgthi (~v)i)(hgjiexp � hgthj (~v)i)

i

w�bin
(65)

where V̂
�1 and hgiiexp are the covariance matrix and the w-bin integrated gi functions

obtained in the previous section. The second term is given as

�
2
w�bin(~v) =

10X

w�bin=1

([N ]wbin � ↵h�iw�bin)2

[N ]w�bin
(66)

where h�iw�bin is in Eq. (44). In reality, there might be an experimental correlation between
di↵erent w-bin, which must be taken into account.

The factor ↵ is a constant, which relate the number of event and the decay rate:

↵ ⌘
4NBB

1 + f+0
⌧B0 ⇥ ✏B(D⇤ ! D⇡)B(D ! K⇡) (67)

where NBB is the number of BB pair produced from ⌥(4S), NBB = (772 ± 11) ⇥ 106,

which corresponds to 711 fb�1 of data at Belle and f+0 = ⌥(4S)!B+B�

⌥(4S)!B0B
0 = 1.058 ± 0.024

and ✏ is the experimental e�ciency1 . The total number of event we assume in this study,
i.e. Eq. (59), ⇠ 26k, corresponds to roughly 2 % e�ciency.

1The other parameters are from PDG: ⌧B0 = 1.519 ⇥ 10�12/(6.58 ⇥ 107) GeV, B(D⇤ ! D0⇡+) =
0.677± 0.005,B(D ! K�⇡+) = 0.0395± 0.00031

14

3 The angular coe�cient gi

Our goal is to determine the new physics contribution which are included in CVL,R Wilson
coe�cient. From theory point of view, it is interesting to obtain the experimental result
in terms of the angular coe�cients, Ji, as each coe�cient has di↵erent sensitivity to these
contribution. The simple example is the J8,9 which is sensitive to the CP violation from
new physics. Furthermore, the helicity amplitudes H±,0 contains the form factors which
induce theoretical uncertainties and can smear out the new physics e↵ect. The theoretical
uncertainties are also di↵erent for di↵erent Ji functions so, that makes also some of the Ji

function more sensitive to new physics e↵ects than others (as it happened in the case of
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5 Fitting procedure

Even though, the obtained error matrix of hgii represents only an ideal situation, we
attempt to fit the theoretical parameters using it for demonstration. The theoretical pa-
rameters ~v, which is ~v = (hA1(1), ⇢

2
D⇤ , R1(1), R2(1), Vcb) for CLN parameterisation and

~v = (a0,1,···g , a
0,1,···
f , a

0,1,···
F1

, Vcb) for BGL parameterisation are fitted by minimising the fol-

lowing �
2:

�
2(~v) = �

2
angle(~v) + �

2
w�bin(~v) + �

2
lattice(~v) (64)

where �2
angle(~v) takes into account the angular distribution and �

2
w�bin(~v) does the w depen-

dence. The �
2
lattice is the constraint from the lattice QCD computation, which we explain

more in detail below.
The first term can be given as

�
2
angle(~v) =

10X

w�bin=1

hX

ij

NeventV̂
�1
ij (hgiiexp � hgthi (~v)i)(hgjiexp � hgthj (~v)i)

i

w�bin
(65)

where V̂
�1 and hgiiexp are the covariance matrix and the w-bin integrated gi functions

obtained in the previous section. The second term is given as

�
2
w�bin(~v) =

10X

w�bin=1

([N ]wbin � ↵h�iw�bin)2

[N ]w�bin
(66)

where h�iw�bin is in Eq. (44). In reality, there might be an experimental correlation between
di↵erent w-bin, which must be taken into account.

The factor ↵ is a constant, which relate the number of event and the decay rate:

↵ ⌘
4NBB

1 + f+0
⌧B0 ⇥ ✏B(D⇤ ! D⇡)B(D ! K⇡) (67)

where NBB is the number of BB pair produced from ⌥(4S), NBB = (772 ± 11) ⇥ 106,

which corresponds to 711 fb�1 of data at Belle and f+0 = ⌥(4S)!B+B�

⌥(4S)!B0B
0 = 1.058 ± 0.024

and ✏ is the experimental e�ciency1 . The total number of event we assume in this study,
i.e. Eq. (59), ⇠ 26k, corresponds to roughly 2 % e�ciency.

1The other parameters are from PDG: ⌧B0 = 1.519 ⇥ 10�12/(6.58 ⇥ 107) GeV, B(D⇤ ! D0⇡+) =
0.677± 0.005,B(D ! K�⇡+) = 0.0395± 0.00031

14

•Angular part: 

Normalised PDF

~v :
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Example of the Right-Handed (RH) model
ZR. Huang, C.D. Lu, R.T. Tang, E.K.
Phys.Rev.D 105 (2022) 1, 013010

•Nevent part: 
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Our goal is to determine the new physics contribution which are included in CVL,R Wilson
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•Unbinned maximum likelihood analysis 
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Necessity of form factor inputs to fit CVR

•Branching ratio

•Forward-backward asymmetry

Cw ⌘
p

w2 � 1(1� 2wr + r2)

<latexit sha1_base64="bmmmefwqPWvBxMtCRmW3dk15yQQ=">AAACFHicbVDLTgIxFO34RHyhLt00EhMMgcxMMLokYeMSE3kkzDDplAINnc7QdiBkwke48VfcuNAYty7c+TeWx0LBkzQ5Oefe3J7jR4xKZZrfxsbm1vbObmovvX9weHScOTmtyzAWmNRwyELR9JEkjHJSU1Qx0owEQYHPSMMfVGZ+Y0SEpCF/UJOIuAHqcdqlGCkteZm8EyDVx4gllak3dsgwpiPoyKFQybhtF6xpzirYY5EXbfvKy2TNojkHXCfWkmTBElUv8+V0QhwHhCvMkJQty4yUmyChKGZkmnZiSSKEB6hHWppyFBDpJvNQU3iplQ7shkI/ruBc/b2RoEDKSeDryVkEuerNxP+8Vqy6t25CeRQrwvHiUDdmUIVw1hDsUEGwYhNNEBZU/xXiPhIIK91jWpdgrUZeJ3W7aJWK1/elbLm0rCMFzsEFyAEL3IAyuANVUAMYPIJn8ArejCfjxXg3PhajG8Zy5wz8gfH5A3WGnbo=</latexit>

BR(B ! D⇤`⌫)

<latexit sha1_base64="GUuCdX8VSd9oo11QBqZWYSHZm+g=">AAACAnicbVDLSgMxFM3UV62vUVfiJliE6qLMSEWXpbpwWcU+oDOWTJppQ5PMkGSEMhQ3/oobF4q49Svc+Tem7Sy0eiBwOOdebs4JYkaVdpwvK7ewuLS8kl8trK1vbG7Z2ztNFSUSkwaOWCTbAVKEUUEammpG2rEkiAeMtILhxcRv3ROpaCRu9SgmPkd9QUOKkTZS195LPclh7WZcqnk6gpd3xx5hzBPJUdcuOmVnCviXuBkpggz1rv3p9SKccCI0ZkipjuvE2k+R1BQzMi54iSIxwkPUJx1DBeJE+ek0whgeGqUHw0iaJzScqj83UsSVGvHATHKkB2rem4j/eZ1Eh+d+SkWcaCLw7FCYMGjCTvqAPSoJ1mxkCMKSmr9CPEASYW1aK5gS3PnIf0nzpOxWyqfXlWK1ktWRB/vgAJSAC85AFVyBOmgADB7AE3gBr9aj9Wy9We+z0ZyV7eyCX7A+vgFj2JYc</latexit>

remain when we take the di↵erence of the decay rate between CP conjugate decays:

d�(B̄ ! D
⇤(! D⇡) `� ⌫̄`)

dw d cos ✓V d cos ✓` d�
� d�(B ! D̄

⇤(! D̄⇡) `+ ⌫`)

dw d cos ✓V d cos ✓` d�

= 2
n
J8 sin 2✓V sin 2✓` sin�+ J9 sin

2
✓V sin2 ✓` sin 2�

o
(23)

In the experimental analysis up to now, the distributions of only one kinematical vari-
able (other three are integrated) are used. We first define

d�(cos ✓V ) ⌘ d�(B̄ ! D
⇤(! D⇡) `� ⌫̄`)

d cos ✓V
(24)

d�(cos ✓`) ⌘ d�(B̄ ! D
⇤(! D⇡) `� ⌫̄`)

d cos ✓`
(25)

d�(�) ⌘ d�(B̄ ! D
⇤(! D⇡) `� ⌫̄`)

d�
(26)

Then, the result is

d�(cos ✓V ) =
6mBm

2
D⇤

8(4⇡)4

p
w2 � 1(1� 2w r + r

2)G2
F |Vcb|2 ⇥ B(D⇤ ! D⇡) (27)

⇥ 1

3
(�4)⇡

n
�3J1s + J2s| {z }

� 8
3J1s

+(�3J1c + 3J1s + J2c � J2s)| {z }
8
3J1s�4J1c

cos2 ✓V
o

d�(cos ✓`) =
6mBm

2
D⇤

8(4⇡)4

p
w2 � 1(1� 2w r + r

2)G2
F |Vcb|2 ⇥ B(D⇤ ! D⇡) (28)

⇥ 4

3
⇡

n
J1c + 2J1s � 2J2s � J2c| {z }

4
3J1s+2J1c

+(J6c + 2J6s)| {z }
2J6s

cos ✓` + (2J2c + 4J2s)| {z }
4
3J1s�2J1c

cos2 ✓`
o

d�(�) =
6mBm

2
D⇤

8(4⇡)4

p
w2 � 1(1� 2w r + r

2)G2
F |Vcb|2 ⇥ B(D⇤ ! D⇡) (29)

⇥ 4

9

n
3J1c + 6J1s � J2c � 2J2s| {z }

16
3 J1s+4J1c

+ 4J3|{z}
4J3

cos(2�) + 4J9|{z}
4J9

sin(2�)
o

Clearly, using Eqs. (27-29), we can determine J1s, J1c, J6s, J3, J9.
The Forward-Backward Asymmetry (FBA) is non-zero only for d�(cos ✓`) and

A✓` ⌘
R 1
0 d�(cos ✓`)d cos ✓` �

R 0
�1 d�(cos ✓`)d cos ✓`R 1

0 d�(cos ✓`)d cos ✓` +
R 0
�1 d�(cos ✓`)d cos ✓`

(30)

=
3J6c + 6J6s

6J1c + 12J1s � 2(J2c + 2J2s)| {z }
9
4

J6s
3J1c+4J1s

(31)

7

Vcb and form factor parameters have to be fixed to get CVR

Form factor parameters have to be fixed to get CVR

/ GF |Vcb|2
Z

dw Cw
h
(2f(w)2 +

F1(w)2

q2
)|CVL � CVR |2 + 2g(w)2m2

B |pD|2|CVL + CVR |2
i

<latexit sha1_base64="lZJoyrS974SV1QBZZ1T+CDBsO7o="></latexit>

/

R
dw Cw

h
f(w)g(w)mB |pD|

�
|CVL |2 � |CVR |2

�i

R
dw Cw

h
(2f(w)2 + F1(w)2

q2 )|CVL � CVR |2 + 2g(w)2m2
B |pD|2|CVL + CVR |2

i

<latexit sha1_base64="8qRIhfGJEFnykBqi0S0sxhs7bnw="></latexit>
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Impact of the new lattice data
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Combining Belle & lattice results

•Assuming the SM, we fit the Belle data and lattice data 
simultaneously. 

~v = (ai, bi, ci, di, Vcb)

ai, bi, … : BGL parameters

�2
tot(~v) = �2

exp(~v) + �2
latt(~v0)

~v0 = (f, g,F1,F2)

D. Ferlewicz, Ph. Urquijo, E. Waheed
 arXiv:2008.09341

Be careful with the Bc inputs!
12



The latest Lattice result on form factors
Fermilab-MILK arxXiv.2105.14019
JLQCD             arXiv. 2304.xxxx
HPQCD            arXiv: 2304.03137

•Lattice QCD groups determined, all form factors (FF) necessary to 
describe the B->D* l nu decay, including their w dependence.  

• In lattice QCD method, the w dependence of FF is obtained by 
chiral extrapolation.  For example, the Fermilab group provided 
the FF at different point of  w and correlation matrix.

�2
latt(~v0) = (~v0 � ~vlatt0 )V �1(~v0 � ~vlatt0 )T

45

TABLE XX: Synthetic data of the chiral-continuum extrapolation for the form factors used in the z expansion with their correlation matrix.

Value
Correlation Matrix

f(1.03) g(1.03) F1(1.03) F2(1.03) f(1.10) g(1.10) F1(1.10) F2(1.10) f(1.17) g(1.17) F1(1.17) F2(1.17)
f(1.03) 5.77(11) 1.0000 0.1156 0.9885 0.6710 0.9247 0.1029 0.8596 0.6518 0.5743 0.0723 0.5229 0.4407
g(1.03) 0.371(14) 0.1156 1.0000 0.1304 0.3489 0.1245 0.9354 0.1564 0.3253 0.1057 0.6819 0.1373 0.2375
F1(1.03) 18.73(38) 0.9885 0.1304 1.0000 0.7304 0.9084 0.1153 0.9065 0.7204 0.5616 0.0816 0.5753 0.4991
F2(1.03) 2.175(70) 0.6710 0.3489 0.7304 1.0000 0.6024 0.3259 0.7364 0.9346 0.3584 0.2449 0.4923 0.6078
f(1.10) 5.49(12) 0.9247 0.1245 0.9084 0.6024 1.0000 0.1781 0.9031 0.6784 0.7973 0.2001 0.6881 0.5825
g(1.10) 0.330(14) 0.1029 0.9354 0.1153 0.3259 0.1781 1.0000 0.1954 0.3664 0.2416 0.8429 0.2442 0.3480
F1(1.10) 17.52(45) 0.8596 0.1564 0.9065 0.7364 0.9031 0.1954 1.0000 0.8430 0.6986 0.2002 0.8116 0.7270
F2(1.10) 1.912(69) 0.6518 0.3253 0.7204 0.9346 0.6784 0.3664 0.8430 1.0000 0.5238 0.3358 0.6981 0.7960
f(1.17) 5.23(17) 0.5743 0.1057 0.5616 0.3584 0.7973 0.2416 0.6986 0.5238 1.0000 0.3769 0.8364 0.7089
g(1.17) 0.290(17) 0.0723 0.6819 0.0816 0.2449 0.2001 0.8429 0.2002 0.3358 0.3769 1.0000 0.3571 0.4456
F1(1.17) 16.46(70) 0.5229 0.1373 0.5753 0.4923 0.6881 0.2442 0.8116 0.6981 0.8364 0.3571 1.0000 0.9218
F2(1.17) 1.692(91) 0.4407 0.2375 0.4991 0.6078 0.5825 0.3480 0.7270 0.7960 0.7089 0.4456 0.9218 1.0000
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Comparison of two Lattice results

f g F1 F2

w w w w

Without unitarity bound

Fermilab-MILK 
JLQCD            

•Using the lattice values for form factors at low w, we obtain 
the BGL parameters (e.g. up to quadratic term).  

•As a result, the higher w regions are less constrained.  

14
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Comparison of two Lattice results
Fermilab-MILK 
JLQCD            

f g F1 F2

w w w w

With unitarity bound

There are small differences between two results but within errors.

•Using the lattice values for form factors at low w, we obtain 
the BGL parameters (e.g. up to quadratic term).  

•As a result, the higher w regions are less constrained.  

16
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Lattice + Belle combined results
Fermilab-MILK 
JLQCD            

+Belle ’18 (arXiv:1809.03290)

JLQCD has slightly better agreement with Belle.

f g F1 F2

w w w w

f g F1 F2

w w w w
17
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Toy study of the unbinned analysis
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Toy study
Z.R. Huang, C.D. Lu, R.T. Tang, E.K.
Phys.Rev.D 105 (2022) 1, 013010
T. Kappor, Z.R. Huang, E.K.
arXive:2304.xxxxx

1.Generate “fake-data” with the Belle ’18 fitted parameters.  
2.Fit the fake-data with the theory formula including new physics 
parameters together with the lattice data

Unbinned analysis of Bd ! D⇤l⌫ with Lattice QCD
data

Tejhas Kapoor∗ and Emi Kou†

Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

1 E↵ective Hamiltonian

Here, note that we can write the hamiltonian as di↵erent combinations. For example, we
can right as Left and Right handed Vector currents or Vector and Axial-vector currents..
We choose the former as left handed current is in SM, while RH is NP, therefore, clearly
distinguishing between the two. However, we choose Scalar and Pseudoscalar terms in-
stead of Left and Right handed scalar currents, as for B ! D⇤ matrix element vanishes
for scalar current, and thus we only have one Wilson coe�cient (pseudoscalar) to fit.
The e↵ective hamiltonian that we use is then given by (assuming no right handed neutrino
is present)

Heff =
4GF
p
2
Vcb[C

l
VL
Ol

VL
+ C l

VR
Ol

VR
+ C l

SO
l
S + C l

PO
l
P + C l

TO
l
T ] (1)

where we have the following five operators:

O`
VL

= [c̄�µ(1� �5)b][¯̀�µ(1� �5)⌫`]

O`
VR

= [c̄�µ(1 + �5)b][¯̀�µ(1 + �5)⌫`]

O`
S = [c̄b][¯̀(1� �5)⌫`]

O`
P = [c̄�5b][¯̀(1� �5)⌫`]

O`
T = [c̄�µ⌫(1� �5)b][¯̀�µ⌫(1� �5)⌫`]

(2)

or written in other way (with quark helicities), they are given as

O`
VL

= (c̄L�
µbL)(¯̀L�µ⌫`L)

O`
VR

= (c̄R�
µbR)(¯̀L�µ⌫`L)

O`
S = (c̄LbR)(¯̀R⌫`L)

O`
P = (c̄�5b)(¯̀R⌫`L)

O`
T = (c̄R�

µ⌫bL)(¯̀R�µ⌫⌫`L)

(3)

∗tejhas.kapoor@ijclab.in2p3.fr
†emi.kou@ijclab.in2p3.fr
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SM fit 

6 Sensitivity study I: SM case with CNL and BGL param-
eterisations

It is clear that up to this point, our fit has no capability of determining hA1(1) and Vcb

separately in the CNL parameterisation where the decay rate is proportional to ↵VcbhA1(1).
In �

2
angle, these overall factor cancels out as the angular coe�cients gi are ratio of Ji

functions. For �2
w�bin, one can readily understand that what we can constrain is only this

product. For this reason, the experimental analysis has been done by two step. First, we
measure a parameter defined as

h̃A1(1) ⌘ ↵VcbhA1(1)

and then, we, use the known value 2 of ↵ and the lattice QCD value of hA1 = 0.906±0.013
to determine Vcb. In the analysis of B ! ⇡`⌫ or B ! D`⌫, this was done di↵erently, by
adding the lattice QCD constraint in �

2 as

�
2
lattice(~v) =

X

i

✓
v
lattice
i � vi

�lattice
vi

◆2

(68)

where vi is hA1(1) in our case. This is equivalent to the method explained above, with
Gaussian distribution for the lattice QCD error. As we will see below, the obtained result
is similar. However, the method utilising �

2
lattice will become necessary when the lattice

data on the other parameters will become available. It can also take into account the
correlation of the lattice QCD results for di↵erent parameters, by modifying Eq. (68). The
similar problem occurs with BGL: there is no common overall factor like hA1(1) but in this
case, the fit can determine all the hadronic parameters only along with ↵Vcb,

(ã0,1,···g , ã
0,1,···
f , ãF1) = ↵Vcb(a

0,1,···
g , a

0,1,···
f , aF1)

In this case, the experimental analysis uses the result of ã0f and use the the lattice QCD

result of hA1(1) to fix a
0
f via the relation:

a
f
0 = 2mB

p
rPf (0)�f (0)hA1(1)

We can use the �
2
lattice method for BGL as well, with ~v being a

0
f .

6.1 Results with CNL

We now show our result on the fit. We use the number of event for each w-bin:

Nevent = (1430, 2407, 2836, 3029, 3070, 3000, 2844, 2620, 2342, 2020) (69)

For illustration, we show the w-bin dependence of hgii function in Fig. 1

2We evaluate ↵ = (12.07± ...)⇥ 10�17 while we use only its central value in this section.
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6.1.1 Reproducing Belle result

First, we show our result with h̃A1(1). In order to be consistent to the Belle result, we
redefine h̃A1(1) as h̃A1(1) ! h̃A1(1)/↵ = hA1(1)Vcb:

~v = (⇢2D⇤ , R1(1), R2(1), ˜hA1(1)) = (1.1061, 1.229, 0.852, 0.0351) (70)

�~v = (0.03608, 0.02105, 0.02183, 0.00024) (71)

⇢~v =

0

BBB@

1. 0.3026 �0.7745 0.7302

0.3026 1. �0.3773 �0.0077

�0.7745 �0.3773 1. �0.2487

0.7302 �0.0077 �0.2487 1.

1

CCCA
(72)

By using the lattice QCD value of hA1(1) = 0.906± 0.013, we find

Vcb = (38.7± 0.6)⇥ 10�3

We obtain the error in ˜hA1(1) close to the Belle results, which is normal as we chose the
number of event to adjust to the Vcb precision of Belle. Now, the other hadronic parameters,
(⇢2D⇤ , R1(1), R2(1)), are measured about (⇠ 20,⇠ 50,⇠ 30) % more precisely than Belle,
which might be the impact of the un-binned angular analysis. The obtained correlation
matrix is also similar except, the correlation between ⇢

2
D⇤�R1(1) and ⇢

2
D⇤�R2(1) is smaller

than Belle.

6.1.2 Result with �lattice

Just to demonstrate the other way to use the lattice data, we use �
lattice method instead

of ˜hA1(1). The results is

~v = (hA1(1), ⇢
2
D⇤ , R1(1), R2(1), Vcb) = (0.906, 1.10612, 1.229, 0.85203, 0.0387) (73)

�~v = (0.013, 0.03608, 0.02105, 0.02183, 0.00062) (74)

⇢~v =

0

BBBBB@

1. 0. 0. 0. �0.899

0. 1. 0.303 �0.774 0.319

0. 0.303 1. �0.377 �0.003

0. �0.774 �0.377 1. �0.109

�0.899 0.319 �0.003 �0.109 1.

1

CCCCCA
(75)

The result reproduces the Belle result well.
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6.1.3 Result without angular observables

To understand the impact of the angular observable, we remove the �2
angle and the obtained

result is:

~v = (⇢2D⇤ , R1(1), R2(1), h̃A1(1)) = (1.0041, 0.979, 0.9243, 0.0351) (76)

�~v = (1.4042, 3.8115, 0.9366, 0.0008) (77)

⇢~v =

0

BBB@

1. 0.998 �0.9998 �0.8813

0.998 1. �0.9979 �0.9054

�0.9998 �0.9979 1. 0.8846

�0.8813 �0.9054 0.8846 1.

1

CCCA
(78)

By using the lattice QCD value of hA1(1) = 0.906± 0.013, we find

Vcb = (38.7± 1.0)⇥ 10�3

Interestingly, while the hadronic parameters ⇢2D⇤ , R1(1), R2(1) are not able to be determined
anymore, Vcb can still be determined at relatively good precision.

6.2 Results with BGL

We now show our result on the fit. We use the number of event for each w-bin:

Nevent = (2101, 3557, 4212, 4518, 4595, 4499, 4267, 3922, 3480, 2956) (79)

For illustration, we show the w-bin dependence of hgii function in Fig. ??

6.2.1 Reproducing Belle result

First, we show our result with (ã0,1,···g , ã
0,1,···
f , ãF1 ···). Again, to match to the Belle analysis,

we redefine (ã0,1,···g , ã
0,1,···
f , ãF1 ···) ! (ã0,1,···g , ã

0,1,···
f , ãF1 ···)/↵ = (a0,1,···g , a

0,1,···
f , aF1 ···)Vcb. We

assume ã
1,2
g = 0, ã2f = 0 as Belle does as well. The result is

~v = (ã0f , ã
1
f , ãF1 , ãF2 , ã

0
g) = (0.051, 0.066, 0.027,�0.329, 0.093)⇥ 10�2 (80)

�~v = (0.0004, 0.016, 0.006, 0.119, 0.001)⇥ 10�2 (81)

⇢~v =

0

BBBBB@

1. �0.816 �0.73 0.586 �0.002

�0.816 1. 0.525 �0.415 �0.046

�0.73 0.525 1. �0.969 �0.004

0.586 �0.415 �0.969 1. 0.003

�0.002 �0.046 �0.004 0.003 1.

1

CCCCCA
(82)
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By using the lattice QCD value of a0f = 0.0132± 0.0002, we find

Vcb = (38.7± 0.6)⇥ 10�3

We obtain the error in ã
0
f close to the Belle results, which is normal as we chose the number

of event to adjust to the Vcb precision of Belle. Now, the higher oder hadronic parameters,
(ã1f , ãF1 , ãF2) are measured about the same precision as Belle while the zeroth order ã0g is
measured 80% better than Belle, which might the impact of the un-binned angular analysis.
It should be noted that the sign of the hadronic parameters are all opposite but only the
relative sign can be measured so it is fine. The obtained correlation matrix is also similar
except, the correlation between ã

1
f � ã

0
g is about factor 10 di↵erent.

We try to include a
1
g to verify the strategy of Belle analysis, where a

1
g is removed from

the fit as this has little impact. The result is:

~v = (ã0f , ã
1
f , ãF1 , ãF2 , ã

0
g, ã

1
g) = (0.0508, 0.0649, 0.027,�0.3267, 0.0932, 0.0003)⇥ 10�2(83)

�~v = (0.0004, 0.0169, 0.0066, 0.1212, 0.0033, 0.107)⇥ 10�2 (84)

⇢~v =

0

BBBBBBB@

1. �0.801 �0.721 0.584 0.035 �0.038

�0.801 1. 0.55 �0.437 �0.237 0.237

�0.721 0.55 1. �0.969 �0.204 0.218

0.584 �0.437 �0.969 1. 0.158 �0.169

0.035 �0.237 �0.204 0.158 1. �0.931

�0.038 0.237 0.218 �0.169 �0.931 1.

1

CCCCCCCA

(85)

Indeed, we find ã
1
g is zero consistent (with a very large error), which probably means that

it has non impact on the fit except for making the fit unstable.

6.2.2 Result with �lattice

For the later use, we demonstrate the other way to use the lattice data, the �lattice method
instead of (ã0,1,···g , ã

0,1,···
f , ãF1 ···). It is worth mentioning that in BGL, the overall factor

which cancels out is only ↵Vcb (nothing equivalent to hA1(1) which factors out in the CNL
case). On the other hand, in the case of BGL, the hadronic parameters can be determined
only up to an arbitrary factor. As soon as we constrain a

0
f and/or a0g, this arbitrary factor

is constrained at the same time and the fit converges.
The a

0
f and the hA1(1) are related by

hA1(1) =
1

2mB
p
rPf (0)�f (0)

a
f
0 (86)
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Statistical error to the 
form factors are 20-80% 
better than the Belle study 
(only), probably due to 
the unbanned analysis.

← normalisation

Reproducing Belle study
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Phys.Rev.D 105 (2022) 1, 013010
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← lattice input

With the current statistic, 
CVR can be measured at 
~3% precision (stat only)!

Previous study (before lattice result)

Right-Handed fit 

Then, using the lattice input hA1(1) = 0.906 ± 0.013 which corresponds to a
f
0 = 0.0132 ±

0.0002, the results is obtained as

~v = (a0f , a
1
f , aF1 , aF2 , a

0
g, Vcb) = (0.0132, 0.017, 0.007,�0.0852, 0.0242, 0.0385) (87)

�~v = (0.0002, 0.0044, 0.0017, 0.0314, 0.0005, 0.0006) (88)

⇢~v =

0

BBBBBBB@

1. 0.06 0.06 �0.04 0.68 �0.88

0.06 1. 0.55 �0.44 0.32 �0.45

0.06 0.55 1. �0.97 0.32 �0.41

�0.04 �0.44 �0.97 1. �0.25 0.32

0.68 0.32 0.32 �0.25 1. �0.78

�0.88 �0.45 �0.41 0.32 �0.78 1.

1

CCCCCCCA

(89)

The result reproduces the Belle result well.

6.2.3 Result without angular observables

As we have done the previous section of CNL, we attempt to remove the �2
angle. However, in

the case of BGL, we found that the fit does not converge without the angular information
(both the �

lattice and the (ã0,1,···g , ã
0,1,···
f , ãF1 ···) methods). Probably, there are too many

ambiguities to be resolved in this case.
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a
0
g = 0.0240± 0.0007 and hA1(1) = 0.906± 0.013)

~v = (a0f , a
1
f , aF1 , aF2 , a

0
g, CVR) = (0.0132, 0.0169, 0.007,�0.0852, 0.0241, 0.0024)

(112)

�~v = (0.0002, 0.0173, 0.0041, 0.0556, 0.0005, 0.0234) (113)

⇢~v =

0

BBBBBBB@

1. 0.01 0.02 �0.02 0. 0.31

0.01 1. 0.86 �0.35 0. 0.8

0.02 0.86 1. �0.76 0. 0.71

�0.02 �0.35 �0.76 1. 0. �0.29

0. 0. 0. 0. 1. �0.42

0.31 0.8 0.71 �0.29 �0.42 1.

1

CCCCCCCA

(114)

The fit for the hadronic parameters except for a0f & a
0
g are not good but CVR is constrained

at 3 % level without ambiguity of the SM Vcb value. In Fig. 7, we show a contour plot on
the hV (1) � CVR and hA1(1) � CVR plane. This plot shows that one day when the lattice

Figure 7:

QCD result on hV (1), hA1(1) will become available and it turns out to be di↵erent from
the experimental fitted value (assuming SM), this can hint non-zero CVR .

7.2.4 Using only w dependent Forward-Backward Asymmetry (with lattice
QCD input for hV (1) and hA1(1) and their w dependences)

Let us first plot the FBA with the BGL input in terms of w-bin in Fig. (8).
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Right-Handed fit including lattice data 

We use only angular dependence and assume CVR is real

The larger ag0 value observed by Fermilab/MILK 
comparing to the Belle measurement could be 
compensated by the negative CVR in RH model.

T. Kappor, Z.R. Huang, E.K.
arXive:2304.xxxxx
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Right-Handed fit including lattice data 
We use only angular dependence and assume CVR is real T. Kappor, Z.R. Huang, E.K.

arXive:2304.xxxxx
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Conclusions

•Belle has been studying the angular distribution to 
constrain the form factors within SM. 

•There are now three lattice QCD results on the B->D* 
Form Factors (HPQCD includes the tensor FF!). 

•Thus, we are ready to move to BSM fit! 

•We performed toy study of the unbanned maximum 
likelihood method of Belle data to RH model 
including the lattice data. 

•We showed that the observed small tension on the 
vector FF could be compensated by the RH 
contribution. 
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