
SM predictions on LFU and implications

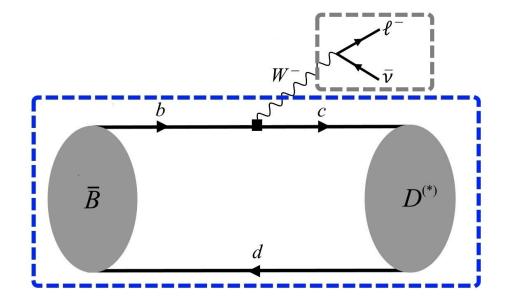
Nico Gubernari

Open LHCb Workshop on semileptonic exclusive *b*→*c* decays INFN - Laboratori Nazionali di Frascati Frascati, 13-Apr-2021

Introduction

Hadronic matrix elements

study *B*-meson decays to test the SM and extract its parameters (e.g., V_{cb}) factorise decay amplitude (neglecting QED corrections)


charged currents: neutral currents:

$$\langle \overline{D}^{(*)} \ell \nu_{\ell} | \mathcal{O}_{eff} | B \rangle = \langle \ell \nu_{\ell} | \mathcal{O}_{lep} | 0 \rangle \langle D^{(*)} | \mathcal{O}_{had} | B \rangle$$
$$\langle K^{(*)} \ell^{+} \ell^{-} | \mathcal{O}_{eff} | B \rangle = \langle \ell \ell | \mathcal{O}_{lep} | 0 \rangle \langle K^{(*)} | \mathcal{O}_{had} | B \rangle + \text{non-fact.}$$

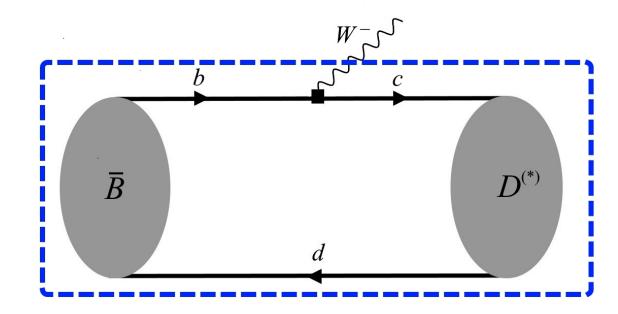
leptonic matrix elements: perturbative objects, high accuracy QED corrections mostly unknown but small (~1%)

hadronic matrix elements: non-perturbative QCD effects, usually large uncertainties (~10%)

(local) hadronic matrix elements are crucial to obtain precise predictions for $b \rightarrow c \ell \nu$ decays

Definition of the form factors

form factors (FFs) parametrize exclusive hadronic matrix elements


 $\langle D(k) | \bar{c} \gamma_{\mu} b | B(q+k) \rangle = 2 k_{\mu} f_{+}(q^{2}) + q_{\mu} (f_{+}(q^{2}) + f_{-}(q^{2}))$

$$\left\langle D(k) \left| \bar{c} \, \sigma_{\mu\nu} q^{\nu} b \right| B(q+k) \right\rangle = \frac{i f_T(q^2)}{m_B + m_P} \left(q^2 (2k+q)_\mu - (m_B^2 - m_P^2) q_\mu \right)$$

decomposition follows from Lorentz invariance

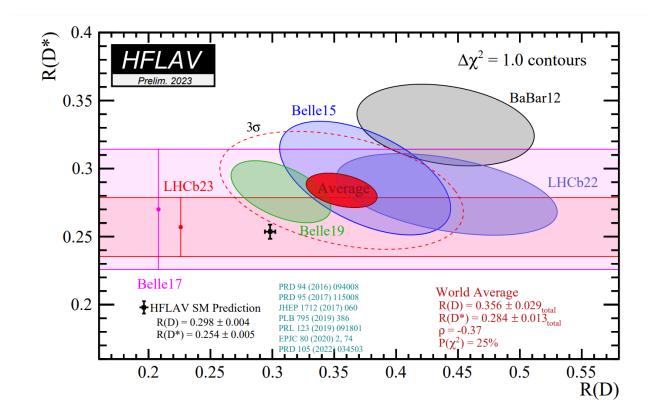
FFs are functions of the momentum transferred q^2 (q^2 is the dilepton mass squared)

2(+1) independent $B \rightarrow D$ FFs 4(+3) independent $B \rightarrow D^*$ FFs

Optimised observables and LFU

test the lepton flavour universality to test the SM

lepton flavour universality (LFU) = the 3 lepton generations have the same couplings to the gauge bosons


violations of LFU \Rightarrow new physics

define observables smartly to reduce FFs uncertainties and cancel V_{cb}

observables to test LFU

$$\frac{R(D^{(*)})}{\Gamma(B \to D^{(*)}\ell\nu)} = \frac{\Gamma(B \to D^{(*)}\ell\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}$$

3.2 σ tension between the SM and data

Form factors calculations

Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)

numerical evaluation of correlators in a finite and discrete space-time more efficient usually at high q^2 reducible systematic uncertainties

2. Light-cone sum rules (LCSRs)

based on unitarity, analyticity, and quark-hadron duality approximation need universal non-perturbative inputs (*B*-meson distribution amplitudes) only applicable at low q^2 non-reducible systematic uncertainties

complementary approaches to calculate FFs in the long run LQCD will dominate the theoretical predictions (smaller and reducible syst unc.)

State of the art

• $B \rightarrow D$

LQCD calculations available at high q^2 [FNAL/MILC 2015] [HPQCD 2015]

• $B \rightarrow D^*$

LQCD calculations available at high q^2 [FNAL/MILC 2021] [JLQCD w.i.p.] in the whole semileptonic region of q^2 [HPQCD 2023] B_s → D_s
LQCD calculations available
in the whole semileptonic region of q²
[HPQCD 2019]

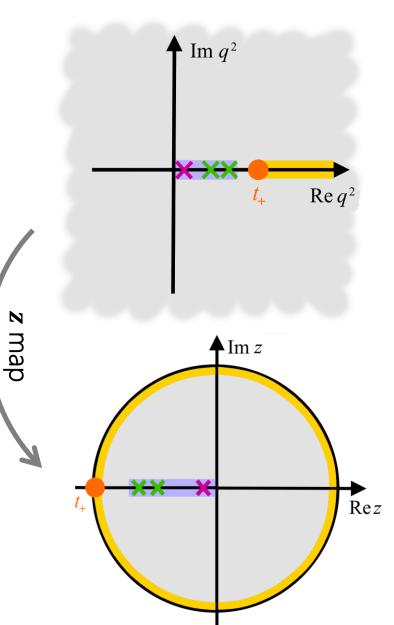
B_s → D^{*}_s
LQCD calculations available
in the whole semileptonic region of q²
[HPQCD 2021] [HPQCD 2023]

LCSRs available for the four processes at low q^2

how to **combine** different calculations for the same channel? how to obtain result in the **whole** semileptonic region if not available from LQCD?

FFs extrapolation and LFU results

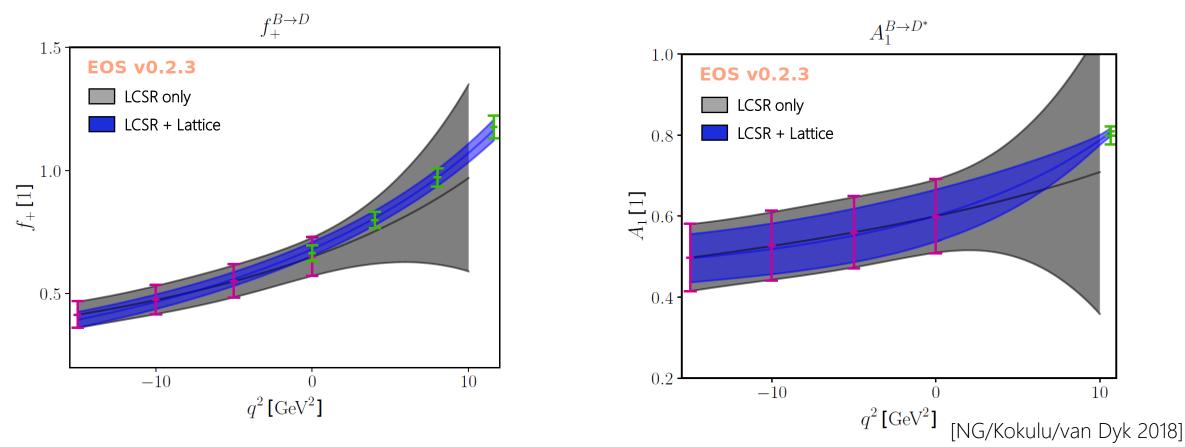
Parametrization for FFs


when LQCD data are available only at high q^2 obtain FFs in the whole semileptonic region by either

- extrapolating LQCD calculations to low q^2
- or **combining LQCD** and **LCSRs**

FFs are analytic functions of q^2 except for branch cut for $q^2 > t_+ = (M_B + M_{D^{(*)}})^2$

fit results to a **z** parametrization = Taylor series (standard approach) [Boyd/Grinstein/Lebed 1997] [Bourrely/Caprini/Lellouch 2008] [Bharucha/Straub/Zwicky 2015] [...]


$$FF \propto \sum_{n=0}^{\infty} \alpha_n^{FF} z^k$$
$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+}}{\sqrt{t_+ - q^2} + \sqrt{t_+}}$$

6

Combine LQCD and LCSRs with naïve z param.

7

combine LQCD and LCSRs to obtain the FF values to the whole semileptonic region good agreement between lattice and LCSRs calculations

use only first 3 terms in the *z* parametrization \Rightarrow what is the truncation error?

Unitarity bounds

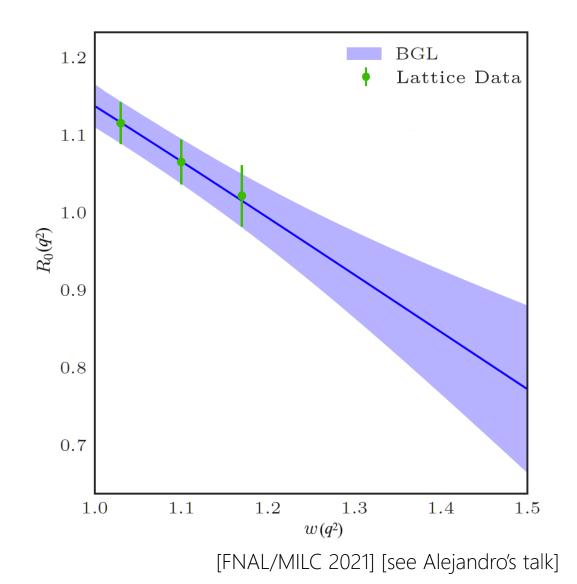
 ∞

n=0

 $|\alpha_n^{\rm FF}|^2$

use analyticity, unitarity, and quark hadron duality to obtain constraints on the z (BGL) parametrization

unitarity bounds: [Boyd/Grinstein/Lebed 1994]


$$FF(z) = \frac{1}{\mathcal{B}(z)\phi(z)} \sum_{n=0}^{\infty} \alpha_n^{FF} z^k \qquad 1$$

determine the truncation error

two different ways to apply use the bounds:

- 1. "standard" BGL fit
- 2. dispersive matrix method

two methods substantially equivalent

HQE for the $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs

use heavy-quark limit $(m_{b,c} \to \infty)$ to relate $B_{(s)} \to D_{(s)}$ FFs to $B_{(s)} \to D_{(s)}^*$ FFs

heavy-quark expansion (HQE) for $B_{(s)} \rightarrow D_{(s)}^{(*)}$ FFs

$$FF^{B \to D^{(*)}}(q^2) = c_0 \xi(q^2) + c_1 \frac{\alpha_s}{\pi} C_i(q^2) + c_2 \frac{1}{m_b} L_i(q^2) + c_3 \frac{1}{m_c} L_i(q^2) + c_4 \frac{1}{m_c^2} l_i(q^2)$$

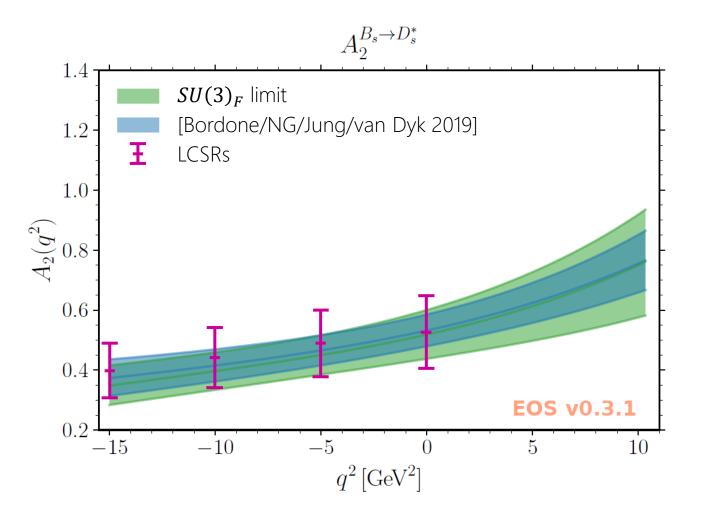
$$FF^{B_s \to D_s^{(*)}}(q^2) = c_0 \xi^s(q^2) + c_1 \frac{\alpha_s}{\pi} C_i(q^2) + c_2 \frac{1}{m_b} L_i^s(q^2) + c_3 \frac{1}{m_c} L_i^s(q^2) + c_4 \frac{1}{m_c^2} l_i(q^2)$$

include $1/m_c^2$ corrections [Bordone/Jung/van Dyk 2019]

all $B \rightarrow D^{(*)}$ and $B_s \rightarrow D_s^{(*)}$ FFs parametrized in terms of 14 lsgur-Wise functions

alternative method to include $1/m_c^2$ corrections proposed in Bernlochner F. at al. (2022) less parameters but model dependent

LQCD calculations must fulfil these relations (within errors)


HQE FFs results

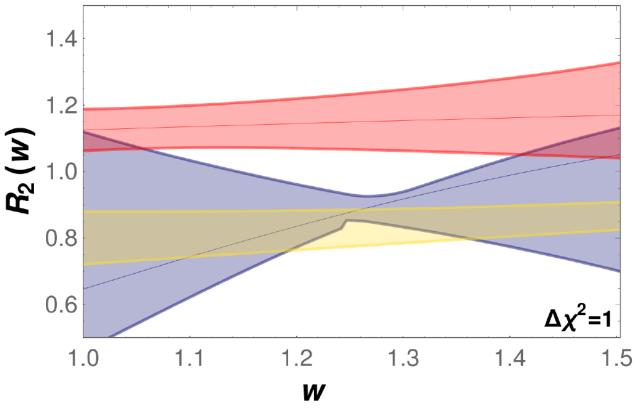
fit Isgur-Wise functions to

- LQCD
- LCSRs for the FFs
- SVZ sum rules for Isgur-Wise functions
- unitarity bounds
- with and w/o exp data

results for all $B \rightarrow D^{(*)}$ FFs and $B_s \rightarrow D_s^{(*)}$ FFs in the whole physical phase space

inclusion of $1/m_c^2$ corrections is necessary CLN parametrization not sufficient anymore (only includes $1/m_{b,c}$ corrections)

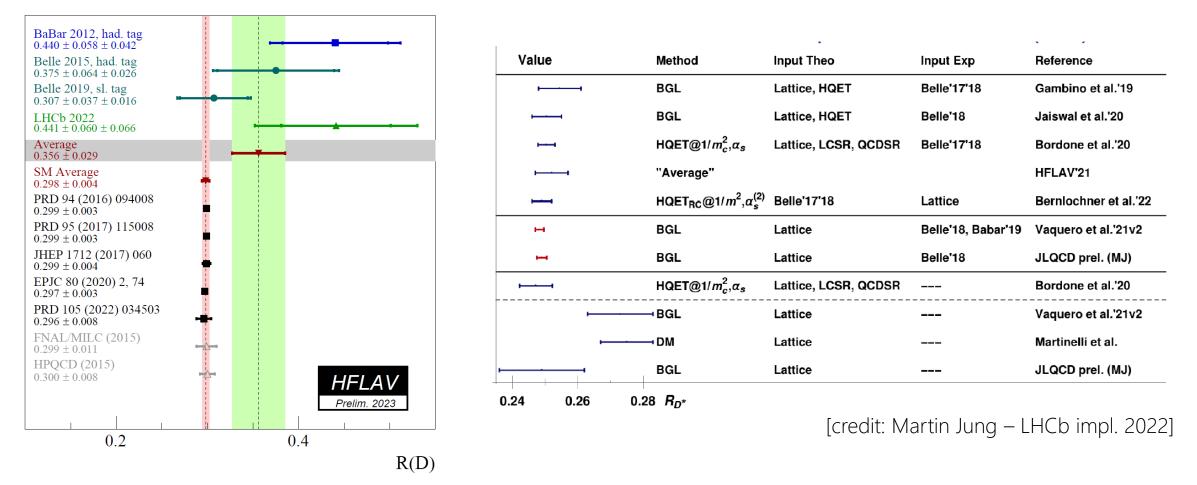
Some (concerning) comparison


tension between experimental measurements (BGL) and FNAL/MILC 2021 (HPQCD 2023)

tension between HQE $(1/m_c^2)$ and FNAL/MILC 2021 (HPQCD 2023)

solid pheno analyses need stable inputs

discussion about different approaches (parametrizations) is useless if inputs are faulty


until LQCD results are well understood theory predictions ($R(D^{(*)})$) and $|V_{cb}|$ extractions cannot be trusted

[credit: Martin Jung – LHCb impl. 2022] [see also Alejandro's talk]

$R(D^{(*)})$ results

once the FFs are known it is trivial to predict the LFU ratios $R(D^{(*)})$ (and $R(D_s^{(*)})$)

excellent agreement btw. SM predictions for R(D), (worse) agreement btw. SM predictions for $R(D^*)$

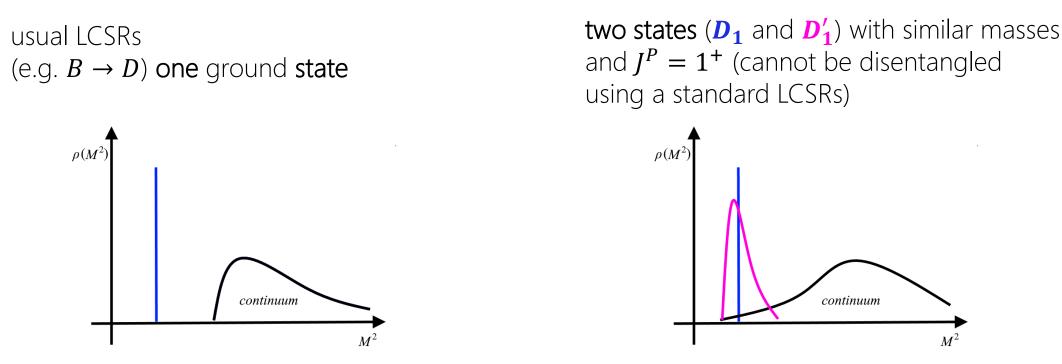
solve $R(D^*) \Longrightarrow NP$ in $B \to D^*(e,\mu)\nu$

$B \rightarrow D^{**}$ form factors

D** mesons

why study $B \rightarrow D^{**} \ell \nu$ decays?

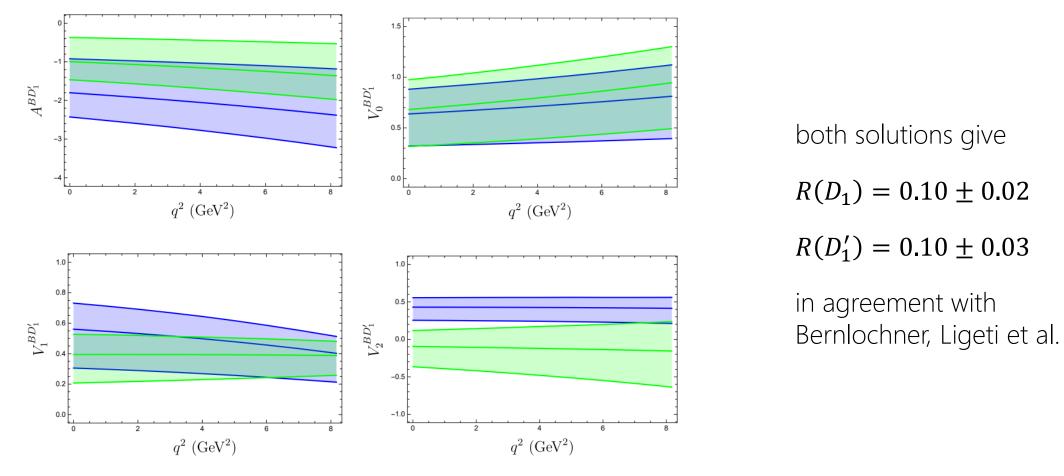
- alternative way to study $b \rightarrow c \ell \nu$ transitions $(R(D^{**}) \text{ ratios}, |V_{cb}| \text{ etc.})$
- background in $B \rightarrow D^* \ell \nu$ measurements
- understand the gap inclusive vs. sum of exclusive $B \rightarrow X_c \ell \nu$


Meson	j	J^P	Mass [MeV]	Width [MeV]
$D_0^*(2300)$	$\frac{1}{2}$	0^+	2343 ± 10	229 ± 16
$D_1(2430) \equiv D_1'$	$\frac{1}{2}$	1^{+}	2412 ± 9	314 ± 29
$D_1(2420) \equiv D_1$	$\frac{3}{2}$	1+	2422.1 ± 0.6	31.3 ± 1.9
$D_2^*(2460)$	$\frac{3}{2}$	2^{+}	2461.1 ± 0.8	47.3 ± 0.8

 $B \rightarrow D_2^*$ FFs already calculated with light-con sum rules (LCSRs) [Aliev et al 2019] we calculated $B \rightarrow D_1$ and $B \rightarrow D'_1$ FFs for the first time [NG/Khodjamirian/Mandal/Mannel 2023] $B \rightarrow D_0^*$ FFs w.i.p. [NG/Khodjamirian/Mandal/Mannel w.i.p.]

New LCSRs

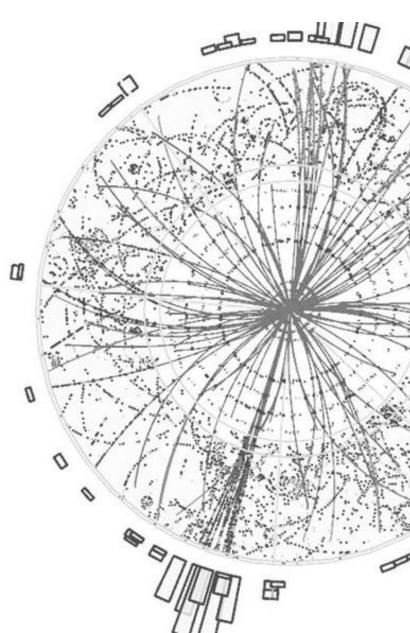
define a correlator and study spectral density


$$\Pi(k,q) = i \int d^4x \, e^{ikx} \langle 0|T\{J_{int}(x), J_{weak}(0)\}|B(k+q)\rangle$$

define new type of LCSRs to deal with states with similar masses

Numerical results

new method yields a **twofold ambiguity** (could be resolved with more experimental data or LQCD results)



[[]NG/Khodjamirian/Mandal/Mannel 2023]

Summary and conclusion

Summary and conclusion

- **combine** theory inputs using *z* **parametrization** (amazing progress by recent LQCD calculations)
- z parametrization must be truncated \Rightarrow control the truncation error using unitarity bounds
- HQET gives additional and precious constraints but...
- CLN parametrization not sufficient anymore \Rightarrow include $1/m_c^2$ corrections
- use HQET and dispersive bounds for better precision
- puzzle in the non-zero recoil $B \rightarrow D^*$ FFs from LQCD ([FNAL/MILC 2021] [HPQCD 2023]) \Rightarrow understand these results otherwise theory predictions ($R(D^{(*)})$) and $|V_{cb}|$ extractions cannot be trusted

16

