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LHCb detector
❖ Likely not the first place one can think to study semileptonic 

decays.

❖ Analyses take profit from:

❖ Large production:  B-hadrons produced in the 
acceptance per fb-1. [PRL 118 (2017) 052002, PRL 119 (2017) 169901].

❖ Excellent vertex resolution (down to 15μm at high pT).

❖ Particle ID capabilities (εPID(μ)>97% for εmisID<5%)

❖ Good momentum resolution δp/p in [0.5-1]% for p in 
[5-200]GeV.

❖ Flexible and efficient trigger.

1010 − 1011
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Reconstructing B kinematics
❖ Decays cannot be fully reconstructed. Difficult to get q2.

❖ B-hadron flight direction is well-measured. Use B-hadron mass to constrain 
the decay and solve q2 with a two-fold ambiguity.

❖ Improve on finding the correct solution by using an MVA based on the B-
hadron flight direction [JHEP 02 (2017) 021]. Gives the correct solution in ~70% 
of the cases.

❖ Reconstruct the corrected mass ( ) using the imbalance of momentum 
transverse to B-hadron flight direction.

❖  peaks at the  mass if only one neutrino is missing.

❖

mcorr

mcorr B(s)

mcorr = m2
vis + p2

⊥ + p⊥
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Measuring CKM matrix elements
❖ Semileptonic B decays are used to extract the magnitude of Vub and Vcb.

❖ Two approaches: inclusive vs exclusive

❖ Experimental and theoretical techniques are independent and complementary.

❖ Inclusive: Sum of all possible final states. Uncertainty dominated by theory inputs.

❖ Exclusive: Decays involve a specific meson. Uncertainty contributions from theory and experiment 
are comparable.

❖ Expect both approaches to be compatible but observed long lasting discrepancy.
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Exclusive measurements
❖ Measure the differential decay rate of  decays as 

a function of the di-lepton momentum transfer squared (q2).

❖ Factorise the EW and strong parts of the decay.

❖ The strong part can be described in terms of scalar functions, 
form factors, as a function of q2. FF cannot be computed in 
perturbation theory.

❖ Experimental measurement is Vcb x FF(q2). The determination 
of Vcb requires a determination of the form factors (either from 
data or from lattice QCD).

B(s) → D(*)
(s) μν
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Beyond B0 and B+

❖ Measurements on Bs and  are complementary to 
those from B0 and B+.

❖ Lattice QCD calculations are easier due to the 
heavier spectator quark -> more precise 
predictions [PRD 99 (2019) 114512].

❖ In Bs decays, Different background composition 
from excited Ds mesons than in  decays.

❖ Above certain mass of the Ds** mesons, the 
decay is through .

Λb

B → D(*)

D(*)K
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Bs → D*s

B → D*



The measurements
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 differential spectrumΛb → Λcμν
❖  (udb) has a different spin structure than  and 

because the (ud) di-quark has j=0, HQET makes cleaner 
predictions.

❖
Measure the differential spectrum . 

Extract the information on ξB(q2) assuming parametrisations 
based on phenomenological models or simple expansion 
around w=1.

❖ Large and clean sample of , with main 
backgrounds from  and 

Λb B0/B+

dΓ
dq2

= GK(q2)ξ2
B(q2)

Λb → ΛcμνX
Λb → Λ*c μν Λb → Σ++/0

c πμν
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[PRD 92 (2015) 034503]

[PRD 96 (2017) 112005]



 differential spectrumΛb → Λcμν
❖  yield in bins of . Correct for feed-down from 

background, efficiencies and unfold.

❖ Different parametrisations have good fit quality. Data/HQET 
predictions agree. 

❖ Knowledge of  FF crucial for .

❖ Opened the route to measurements of FF in other B-hadrons. 

❖ Significant yields of excited states O(10k). Good opportunity 
to study them. 

Λb q2

Λb → Λc R(Λc)
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[PRD 96 (2017) 112005]

ρ2 = 1.63 ± 0.07 ± 0.08

Lattice QCD from
[PRD92 (2015) 034503]



Vcb from Bs decays
❖ Extract the value of Vcb from  and 

 decays reconstructing only the 
 final state. 

❖ Use  as normalisation. Ratio of yields is 
proportional to Vcb.  and  are 
taken as external inputs. Kinematically identical decays 
-> reduce systematic uncertainties.

❖ Use  which is correlated with w. Avoid to use any 
approximation.

Bs → D−
s μ+ν

Bs → D*−
s μ+ν

D−
s ( → K−K+π−)μ+

B0 → D−(*)μ+ν
BR(B0 → D−(*)μ+ν) fs/fd

p⊥(Ds)
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Analysis strategy
❖ Template fit to  and  to identify the signal decays and to measure Vcb and the form factors.

❖ Signal templates depend on form factors which are recalculated at each fit iteration. Use CLN 
and BGL parametrisations.

❖ Fit is simultaneous to signal and normalisation mode. Also provide sensitivity to form factors.

mcorr p⊥
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Fit results
❖ Yields for signal, normalisation and form factors are free 

parameters.
❖ Use only CLN for the normalisation as it contain less parameters.
❖ FF in normalisation mode consistent with world averages.

❖ For the signal use CLN and BGL parametrisations. No significant 
differences found between both parametrisations.

❖ Parametrisation does not seem to be responsible for the exclusive vs 
inclusive disagreements.
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 FF measurementBs → D*s
❖ Aim to measure more accurately the  FF. 

❖ Extract the differential decay rate of  decays as a function of w by fitting 

❖ Full reconstruction of  decay.

❖ Correct the raw yields for detector resolution (unfolding) and selection and reconstruction 
efficiencies.

❖ Fit the unfolded and efficiency corrected spectrum with CLN (extract ) and BGL 
parametrisations (extract ).

❖ Other parameters are taken from external sources.

Bs → D*s

Bs → D*−
s μ+ν mcorr

D*−
s → D−

s γ

ρ2

af
1, af

2
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[JHEP 12 (2020) 144]



Selection and signal yields
❖ Consider only photons close to the  flight direction.

❖ Use sPlot to subtract the combinatorial photon background.

❖ Efficiencies extracted from data calibration samples

D−
s
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[JHEP 12 (2020) 144]
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FF results
❖ After unfolding and correcting the measured yield for the efficiencies, fit the differential decay 

rate with CLN and BGL parametrisations. No significant differences found between both.

❖ Provide unfolded spectrum for phenomenological analysis for the first time.
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[JHEP 12 (2020) 144]
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Vub/Vcb from Bs → K+μ−ν
❖ Use  decays to measure Vub. First observation of  decay.

❖ Normalise with  so the measurement is Vub/Vcb. Use  to discriminate signal and 
background.

❖ Divide signal in two bins of  with equal number of signal events.

Bs → K−μ+ν Bs → K−μ+ν

Bs → D−
s μ+ν mcorr

q2
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[PRL 126 (2021) 081804]
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Vub/Vcb from Bs → K+μ−ν
❖ Two different FF predictions for  

used to extract Vub.

❖ Low : LCSR based on [JHEP 08 (2017) 112].

❖ High : LQCD based on [PRD 100 (2019) 
034501].

❖ Provide two values of Vub.

Bs → K−μ+ν

q2

q2
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[PRL 126 (2021) 081804]
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Exclusive Vub vs Vcb

❖ Averaging all the results shown and adding 
Vub from  normalised to  
[Nature Phys. 11 (2015) 743].

❖ Contains updates on normalisation 
BR( ), and LQCD for 

❖ Tension between exclusive and inclusive 
measurements still present. 

Λb → pμν Λb → Λcμν

Λc → pKπ q2 > 7 GeV2
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The future
❖ Vcb from 

❖ Based on PRD 96 (2017) 112005 to measure  by fitting the corrected mass in bins of and 
compare with lattice predictions to obtain Vcb. 

❖ Additionally, will produce a precise measurement of  and get the fraction of 
inclusive rate going to  ( ).

❖ Vub/Vcb from 

❖ Normalise to . Use LQCD and QCDSR to get the ratio of FF. [PRD 105, 014503; PRD 102, 
094518; JHEP 02 (2020) 171 ]

❖ Analysis strategy formulated to reduce the sensitivity to . Single fit to 

Λb → Λcμνμ

dΓ/dq2 q2

BF(Λb → Λcμν)
Λ*c N(Λ*c μν/ΛcμνX)

Bc → D(*)0μν

Bc → J/ψμν

q2 mcorr
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The LHCb upgrade
❖ In Run3 LHCb has removed the hardware trigger, being 

able to reconstruct in software the 30MHz of visible 
collisions.

❖ The removal of L0 is crucial for hadronic modes as their 
yield saturated with luminosity.

❖ Effects on the majority of  decays as the hadrons 
are (partly) used to select the events.

❖ When only muons were used to trigger, now hadrons can 
provide extra statistics.

❖ Hadronic triggers are mandatory to access low pT muons.

b → clνl
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Conclusions
❖ Properties of B-hadrons can be studied in LHCb with semileptonic decays with high precision.

❖ Several measurements of FF done, fundamental inputs for R(Xc) measurements.

❖ CKM matrix elements Vub, Vcb measured exclusively with similar precision as the inclusive.

❖ Long lasting ~  tension between inclusive and exclusive measurements is still present.

❖ Crucial collaboration with the theory community.

❖ New measurements of CKM matrix elements ongoing with  and .

❖ Run 3 with the upgraded detector and fully software trigger will provide more data. 

3σ

Λb B+
c
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Backup
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Form factors from  decaysBs → D*s μν
❖ The decays  are described by four form factors. 

❖ The helicity amplitudes (H+,-,0,t) can be described in terms of the form factors.
❖ At the zero recoil point (q2max) the FF can be computed with precision in LQCD.
❖ Experimentally the zero recoil point is not accessible as the phase space vanishes. 

❖ Need an extrapolation of the measured distribution of the decay rate to q2max.
❖ The extrapolation relies on the FF parametrisation: CLN [Nucl. Phys. B530 (1998) 153] vs BGL [PRL 74 

(1995) 4603, PLB 353 (1995) 306].

Bs → D*s μν
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EW + phase space contribution

QCD contribution



q2 vs w
•The quantity q2 represents the di-lepton momentum transfer 

squared. Commonly used by the experimentalists.

•Easier to obtain experimentally after accessing the B 
momentum. 

•The quantity w represents the hadron recoil (Lorentz boost of 
the D meson in the B rest frame). Commonly used by the 
theorists.

•Dimensionless and better defined properties in the 
mb,c>>ΛQCD limit (w=1). 

•Related by . The zero recoil point means 

 or . 

w =
m+

B + m2
D − q2

2mBmD
q2 = q2

max w = 1

24



FF results
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[JHEP 12 (2020) 144]
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