Workshop on semileptonic decays. Frascati, 12-14/04

Exclusive semileptonic measurements and prospects at LHCb

Ricardo Vázquez Gómez (UB)

LHCb detector

- Likely not the first place one can think to study semileptonic * decays.
- Analyses take profit from: •
 - Large production: $10^{10} 10^{11}$ B-hadrons produced in the acceptance per fb⁻¹. [PRL 118 (2017) 052002, PRL 119 (2017) 169901].
 - Excellent vertex resolution (down to $15\mu m$ at high p_T). *
 - Particle ID capabilities ($\epsilon_{PID}(\mu) > 97\%$ for $\epsilon_{misID} < 5\%$)
 - Good momentum resolution $\delta p/p$ in [0.5-1]% for p in [5-200]GeV.
 - Flexible and efficient trigger.

Reconstructing B kinematics

- Decays cannot be fully reconstructed. Difficult to get q².
- B-hadron flight direction is well-measured. Use B-hadron mass to constrain ** the decay and solve q² with a two-fold ambiguity.
- Improve on finding the correct solution by using an MVA based on the B-* hadron flight direction [JHEP 02 (2017) 021]. Gives the correct solution in ~70% of the cases.
- Reconstruct the corrected mass (m_{corr}) using the imbalance of momentum * transverse to B-hadron flight direction.
 - * m_{corr} peaks at the $B_{(s)}$ mass if only one neutrino is missing.

$$* m_{corr} = \sqrt{m_{vis}^2 + p_{\perp}^2} + p_{\perp}$$

 $D_{s}^{(*)}+\mu$

Measuring CKM matrix elements

- * Semileptonic B decays are used to extract the magnitude of V_{ub} and V_{cb}.
 - * Two approaches: inclusive vs exclusive
- * Experimental and theoretical techniques are independent and complementary.
 - * Inclusive: Sum of all possible final states. Uncertainty dominated by theory inputs.
 - Exclusive: Decays involve a specific meson. Uncertainty contributions from theory and experiment are comparable.
- * Expect both approaches to be compatible but observed long lasting discrepancy.

Exclusive measurements

- ★ Measure the differential decay rate of $B_{(s)} → D_{(s)}^{(*)} \mu \nu$ decays as a function of the di-lepton momentum transfer squared (q²).
- * Factorise the EW and strong parts of the decay.
 - The strong part can be described in terms of scalar functions, form factors, as a function of q². FF cannot be computed in perturbation theory.
 - * Experimental measurement is $V_{cb} \times FF(q^2)$. The determination of V_{cb} requires a determination of the form factors (either from data or from lattice QCD).

Beyond B⁰ and B⁺

- Measurements on B_s and Λ_b are complementary to * those from B⁰ and B⁺.
- Lattice QCD calculations are easier due to the * heavier spectator quark -> more precise predictions [PRD 99 (2019) 114512].
- In B_s decays, Different background composition from excited D_s mesons than in $B \rightarrow D^{(*)}$ decays.
 - Above certain mass of the D_s^{**} mesons, the decay is through $D^{(*)}K$.

The measurements

- Λ_{h} (udb) has a different spin structure than B^{0}/B^{+} and * because the (ud) di-quark has j=0, HQET makes cleaner predictions.
 - Measure the differential spectrum $\frac{d\Gamma}{dq^2} = GK(q^2)\xi_B^2(q^2).$ Extract the information on $\xi_B(q^2)$ assuming parametrisations based on phenomenological models or simple expansion around w=1.
- Large and clean sample of $\Lambda_b \rightarrow \Lambda_c \mu \nu X$, with main backgrounds from $\Lambda_b \to \Lambda_c^* \mu \nu$ and $\Lambda_b \to \Sigma_c^{++/0} \pi \mu \nu$

[PRD 96 (2017) 112005] $\Lambda_b \rightarrow \Lambda_c \mu \nu$ differential spectrum

- Λ_b yield in bins of q^2 . Correct for feed-down from background, efficiencies and unfold.
- Different parametrisations have good fit quality. Data/HQET predictions agree.
- Knowledge of $\Lambda_b \to \Lambda_c$ FF crucial for $R(\Lambda_c)$.
- Opened the route to measurements of FF in other B-hadrons.
- Significant yields of excited states O(10k). Good opportunity to study them.

[PRD 96 (2017) 112005] $\Lambda_b \rightarrow \Lambda_c \mu \nu$ differential spectrum

V_{cb} from B_s decays

- Extract the value of V_{cb} from $B_s \rightarrow D_s^- \mu^+ \nu$ and * $B_s \rightarrow D_s^{*-} \mu^+ \nu$ decays reconstructing only the $D_{\rm s}^{-}(\rightarrow K^{-}K^{+}\pi^{-})\mu^{+}$ final state.
 - * Use $B^0 \to D^{-(*)}\mu^+\nu$ as normalisation. Ratio of yields is proportional to V_{cb}. $BR(B^0 \rightarrow D^{-(*)}\mu^+\nu)$ and f_s/f_d are taken as external inputs. Kinematically identical decays -> reduce systematic uncertainties.
- Use $p_{\perp}(D_s)$ which is correlated with w. Avoid to use any approximation.

[PRD 101 (2020) 072004]

D_s^(*)+µ **D**_s(*) Bs SV PV LHCb Simulation True w1.5 1.4 1.3 1.5 2 2.5 $p_{\parallel}(D_{s}^{-})$ [GeV/c] 0.5

- Template fit to m_{corr} and p_{\perp} to identify the signal decays and to measure V_{cb} and the form factors. *
- Signal templates depend on form factors which are recalculated at each fit iteration. Use CLN and BGL parametrisations.
 - Fit is simultaneous to signal and normalisation mode. Also provide sensitivity to form factors.

[PRD 101 (2020) 072004]

- Yields for signal, normalisation and form factors are free * parameters.
 - Use only CLN for the normalisation as it contain less parameters.
 - FF in normalisation mode consistent with world averages.
- For the signal use CLN and BGL parametrisations. No significant * differences found between both parametrisations.

 $|V_{cb}|_{CLN} = (41.4 \pm 0.6 \pm 0.9 \pm 1.2) \times 10^{-3}$ $|V_{cb}|_{BGL} = (42.3 \pm 0.8 \pm 0.9 \pm 1.2) \times 10^{-3}$

Parametrisation does not seem to be responsible for the exclusive vs * inclusive disagreements.

Fit results

[PRD 101 (2020) 072004]

$B_s \rightarrow D_s^*$ FF measurement

- Aim to measure more accurately the $B_s \rightarrow D_s^*$ FF. *
- *
 - * Full reconstruction of $D_s^{*-} \rightarrow D_s^- \gamma$ decay.
- ** efficiencies.
- Fit the unfolded and efficiency corrected spectrum with CLN (extract ρ^2) and BGL * parametrisations (extract a_1^f, a_2^f).
 - Other parameters are taken from external sources.

Extract the differential decay rate of $B_s \rightarrow D_s^{*-} \mu^+ \nu$ decays as a function of w by fitting m_{corr}

Correct the raw yields for detector resolution (unfolding) and selection and reconstruction

Selection and signal yields

- Consider only photons close to the D_c^- flight direction. *
 - Use sPlot to subtract the combinatorial photon background. *

Efficiencies extracted from data calibration samples *

- *
- Provide unfolded spectrum for phenomenological analysis for the first time. *

[JHEP 12 (2020) 144]

F'F'results

After unfolding and correcting the measured yield for the efficiencies, fit the differential decay rate with CLN and BGL parametrisations. No significant differences found between both.

For CLN: $\rho^2 = 1.17 \pm 0.05 \pm 0.07$ in agreement with those from $B^0 \rightarrow D^{*-}\mu^+\nu$ No flavour SU(3) breaking.

> For BGL: $= -0.002 \pm 0.034 \pm 0.046$ $a_2^f = 0.93^{+0.05+0.04}_{-0.20-0.38}$

[PRL 126 (2021) 081804] $V_{ub}/V_{cb} \operatorname{from} B_{s} \to K^{+}\mu^{-}\nu$

- * Use $B_s \to K^- \mu^+ \nu$ decays to measure V_{ub} . First observation of $B_s \to K^- \mu^+ \nu$ decay.
 - * Normalise with $B_s \rightarrow D_s^- \mu^+ \nu$ so the measurement is V_{ub}/V_{cb} . Use m_{corr} to discriminate signal and background.
- Divide signal in two bins of q^2 with equal number of signal events.

[PRL 126 (2021) 081804] $V_{ub}/V_{cb} \operatorname{from} B_{s} \to K^{+}\mu^{-}\nu$

- Two different FF predictions for $B_s \rightarrow K^- \mu^+ \nu$ * used to extract V_{ub} .
 - * Low *q*²: LCSR based on [JHEP 08 (2017) 112].
 - * High q^2 : LQCD based on [PRD 100 (2019) 034501].
- Provide two values of V_{ub} .

Exclusive Vub vs Vcb

- * Averaging all the results shown and adding V_{ub} from $\Lambda_b \rightarrow p\mu\nu$ normalised to $\Lambda_b \rightarrow \Lambda_c\mu\nu$ [Nature Phys. 11 (2015) 743].
 - * Contains updates on normalisation BR($\Lambda_c \rightarrow pK\pi$), and LQCD for $q^2 > 7 \text{ GeV}^2$
- Tension between exclusive and inclusive measurements still present.

The future

* V_{cb} from $\Lambda_b \to \Lambda_c \mu \overline{\nu}_{\mu}$

- * compare with lattice predictions to obtain V_{cb}.
- * inclusive rate going to $\Lambda_c^* (N(\Lambda_c^* \mu \nu / \Lambda_c \mu \nu X))$.
- * V_{ub}/V_{cb} from $B_c \rightarrow D^{(*)0}\mu\nu$
 - * 094518; JHEP 02 (2020) 171]
 - Analysis strategy formulated to reduce the sensitivity to q^2 . Single fit to m_{corr}

Based on PRD 96 (2017) 112005 to measure $d\Gamma/dq^2$ by fitting the corrected mass in bins of q^2 and

Additionally, will produce a precise measurement of $BF(\Lambda_h \to \Lambda_c \mu \nu)$ and get the fraction of

Normalise to $B_c \rightarrow J/\psi\mu\nu$. Use LQCD and QCDSR to get the ratio of FF. [PRD 105, 014503; PRD 102,

The LHCb upgrade

- In Run3 LHCb has removed the hardware trigger, being * able to reconstruct in software the 30MHz of visible collisions.
 - The removal of L0 is crucial for hadronic modes as their yield saturated with luminosity.
 - Effects on the majority of $b \rightarrow c l \nu_l$ decays as the hadrons are (partly) used to select the events.
 - When only muons were used to trigger, now hadrons can provide extra statistics.
- Hadronic triggers are mandatory to access low p_T muons.

Conclusions

- * Properties of B-hadrons can be studied in LHCb with semileptonic decays with high precision.
- * Several measurements of FF done, fundamental inputs for R(X_c) measurements.
- * CKM matrix elements V_{ub}, V_{cb} measured exclusively with similar precision as the inclusive.
 - * Long lasting $\sim 3\sigma$ tension between inclusive and exclusive measurements is still present.
- * Crucial collaboration with the theory community.
- * New measurements of CKM matrix elements ongoing with Λ_b and B_c^+ .
- * Run 3 with the upgraded detector and fully software trigger will provide more data.

Backup

Form factors from $B_s \to D_s^* \mu \nu$ decays

* The decays $B_s \to D_s^* \mu \nu$ are described by four form factors.

$$\frac{d\Gamma(B_s^0 \to D_s^{*-} \mu^+ \nu_{\mu})}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\eta_{cb}|^2}{96 \pi^3} \times \left[(|H_+|^2 + |H_+|^2) + \frac{1}{2} \right]$$

- * The helicity amplitudes $(H_{+,-,0,t})$ can be described in terms of the form factors.
- * At the zero recoil point (q^{2}_{max}) the FF can be computed with precision in LQCD.
- * Experimentally the zero recoil point is not accessible as the phase space vanishes.
 - * Need an extrapolation of the measured distribution of the decay rate to q^2_{max} .
 - The extrapolation relies on the FF parametrisation: CLN [Nucl. Phys. B530 (1998) 153] vs BGL [PRL 74 (1995) 4603, PLB 353 (1995) 306].

orm factors. **EW + phase space contribution** $\frac{|\eta_{\text{EW}}|^2 |\vec{p}| q^2}{\pi^3 m_{B_s^0}^2} \left(1 - \frac{m_{\mu}^2}{q^2}\right)^2 \qquad \text{QCD contribution}$ $^2 + |H_-|^2 + |H_0|^2) \left(1 + \frac{m_{\mu}^2}{2 q^2}\right) + \frac{3}{2} \frac{m_{\mu}^2}{q^2} |H_t|^2 \right]$

$q^2 VS W$

- The quantity q² represents the di-lepton momentum transfer squared. Commonly used by the experimentalists.
 - Easier to obtain experimentally after accessing the B momentum.
- The quantity w represents the hadron recoil (Lorentz boost of the D meson in the B rest frame). Commonly used by the theorists.
 - Dimensionless and better defined properties in the $m_{b,c} >> \Lambda_{QCD}$ limit (w=1).

Related by $w = \frac{m_B^+ + m_D^2 - q^2}{2m_B m_D}$. The zero recoil point means $q^2 = q_{max}^2$ or w = 1.

[JHEP 12 (2020) 144]

FF results

25

