Coherent Cherenkov radio-emission from EeV showers in dense media through thinned simulations

Jaime Alvarez-Muñiz, Clancy W. James, Raymond J. Protheroe & Enrique Zas

Univ. Santiago de Compostela, SPAIN Univ. of Adelaide, AUSTRALIA

ARENA 2008, 25-27 June, Rome (Italy)

Motivation

- Detection of coherent Cherenkov radio emission in dense & transparent media, very promising technique for UHEv detection: E-field power ~ (Shower energy)²
- Many experimental initiatives (mainly) in ice & the moon regolith
- Reconstruct properties of cascade from observed E-field \rightarrow Simulations needed !!

The radio technique in dense media

Simulation of EeV showers in dense media: The challenge

 Coherent Cherenkov E-field in dense media is produced by sub-MeV electrons (through Compton, Moeller, Bhabha,... scattering)

⁽Askary'an effect measured at SLAC).

Obtaining Cherenkov radiation

- "Full" simulations feasible up to $E = 10^{15} 10^{16} eV$
- Coherent Cherenkov radio emission at E > 10¹⁸ eV was generated exploiting the analogy with diffraction by a slit

E-field can be obtained Fourier-transforming the longitudinal & lateral profile of the shower

1D simulations

"Thinning" techniques

 Feasibility of applying "thinning" techniques to the simulation of electromagnetic (EM) showers in dense media for radio applications.

- Goals:

- 1. Reduce as much as possible CPU time
- 2. Achieve accurate description of shower development & Cherenkov radiation emission.

[J. A-M, C.W. James, R.J. Protheroe & E. Zas to be submitted]

• Other approaches: hybrid techniques (work in progress)

Basics of "Thinning"

- Extensively & succesfully used for the simulation of showers in the atmosphere: **AIRES**, **CORSIKA**, ...
- General ideas:
- 1. Not all shower particles are tracked, only selected ones (CPU time saved).
- 2. Selection according to particle energy (thinning algorithm).
- 3. Assign "weights" to particles tracked to compensate for the non-selected ones.

A "thinning" algorithm for EM showers

All interactions are of the type: $A \rightarrow B + C$

Implemented in ZHS code \rightarrow "ZHS-thinned" code

Optimising thinning params. (E_{min}, E_{max})

Compare thinned showers to fully simulated ones

Choose optimal (E_{min}, E_{max}) combinations so that:

- Thinned showers keep accuracy of fully simulated ones
- CPU time minimised

Extrapolate optimal combinations to highest energies:

- Check stability of results under different optimal (E_{min}, E_{max})
- Compare to 1D simulations

Results: Accuracy of thinned sims.

• Accuracy of "full" simulations kept (< 10% disagreement) for $E_{min} < 1 \text{ GeV } \& E_{max}/E_{min} \sim 10^4 - 10^5$ (Medium-independent)

Results: Accuracy of thinned sims.

• Accuracy of "full" simulations kept (< 10% disagreement) for $E_{min} < 1 \text{ GeV \& } E_{max}/E_{min} \sim 10^4 \cdot 10^5$ (Medium-independent)

11

Results: Accuracy of thinned sims.

• Accuracy of "full" simulations kept (< 10% disagreement) for $E_{min} < 1 \text{ GeV \& } E_{max}/E_{min} \sim 10^4 \cdot 10^5$ (Medium-independent)

12

Time gains through thinning ($E_0 = 10^{18} \text{ eV}$)

E _{max} [eV]	E _{min} [eV]	CPU time*
Full	simulation	2.33 yr
10 ¹²	107	4 hr 33 min
10 ¹³	10 ⁸	41.8 min
10 ¹³	107	31.9 min
10 ¹⁴	10 ⁸	4.7 min

*Computed with an Intel Q6600 Quad 2.4 GHz processor

Examples of 10²⁰ eV thinned showers

Examples of 10²⁰ eV thinned showers

Examples of 10²⁰ eV showers

Examples of 10²⁰ eV showers

Summary, conclusions & outlook

- "Thinning" techniques were successfully applied to the simulation of EM showers in dense media for radio applications.
 - Very large reductions of CPU time &
 - 90% accuracy achieved
- Unprecedented 3D simulations of the E-field from EM showers in ice, regolith,... up to 10²⁰ eV: parameterisations for practical applications available.
- Outlook: Application to hadronic showers & actual neutrino interactions.

