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» Detection of coherent Cherenkov radio emission in dense & transparent media, very
promising technique for UHEv detection: E-field power ~ (Shower energy)?

* Many experimental initiatives (mainly) in ice & the moon regolith

» Reconstruct properties of cascade from observed E-field — Simulations needed !!
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» Coherent Cherenkov E-field in dense media is produced by sub-MeV
electrons ( through Compton, Moeller, Bhabha,... scattering)

(Askary an effect measured at SLAC).

10000 ———ry ————rrrrr —
: E=100 TeV, ZHS MC in Ice . . .

Simulation of a single shower
E,=1 EeV (10'8 eV) following

=~ e  down to sub-MeV energies

0 1000 Tl 7

E e h::':s

° 100 .

g " ~ years of CPU time !

Total track —— :\
Excess charge frack - - 50 % of excess track due
o :‘ o to e with K, < 7-8 MeV
l00.1 1 10 100

Kinetic energy threshold [MeV] [E. Zas, F. Halzen, T. Stanev PRD 45, 362 (1992)]



e “Full” simulations feasible up to E = 10 - 101% eV

e Coherent Cherenkov radio emission at E > 1018 eV was
generated exploiting the analogy with diffraction by a slit

E-field can be obtained
Fourier-transforming
the longitudinal &
lateral profile of the
shower

1D simulations

[J. A-M & E. Zas, PRD 62, 063001 (2000)]

Diffraction by a slit
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o Feasibility of applying “thinning” technigues to the
simulation of electromagnetic (EM) showers in dense
media for radio applications.

— Goals:
1.Reduce as much as possible CPU time

2.Achieve accurate description of shower development &
Cherenkov radiation emission.

[J. A-M, C.W. James, R.J. Protheroe & E. Zas to be submitted]

« Other approaches: hybrid techniques (work in progress)



« Extensively & succesfully used for the simulation of showers
In the atmosphere: AIRES, CORSIKA, ...

e General iIdeas:

1. Not all shower particles are tracked, only selected ones
(CPU time saved).

2. Selection according to particle energy (thinning algorithm).

3. Assign “weights” to particles tracked to compensate for the
non-selected ones.



All interactions are of thetype: A —-B+C

2 “threshold” energies: E E

max? min

Thinning region:
Follow B or C or none No thinning No .Chere',tnk'ov
depending on E, radio emission
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No thinning




Compare thinned showers to fully simulated ones

Choose optimal (E E,..x) combinations so that:

min !

 Thinned showers keep accuracy of fully simulated ones

e CPU time minimised

Extrapolate optimal combinations to highest energies:

« Check stability of results under different optimal (E, ;s Eax)

« Compare to 1D simulations




» Accuracy of “full” simulations kept (< 10% disagreement) for
E..<1GeV&E,,/E., ~10%-10> (Medium-independent)
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» Accuracy of “full” simulations kept (< 10% disagreement) for

E. <1GeV&E
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» Accuracy of “full” simulations kept (< 10% disagreement) for

E.n<1GeV&E (Medium-independent)
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[eV]

leV] CPU time*

E ax E min
Full simulation 2.33 yr
10%2 107 4 hr 33 min
1013 108 41.8 min
1013 107 31.9 min
1014 108 4.7 min

*Computed with an Intel Q6600 Quad 2.4 GHz processor 13
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“Thinning” techniques were successfully applied to the
simulation of EM showers in dense media for radio
applications.

— Very large reductions of CPU time &

— 90% accuracy achieved

Unprecedented 3D simulations of the E-field from EM
showers in ice, regolith,... upto 10 <0 eV:

parameterisations for practical applications available.

Outlook: Application to hadronic showers & actual

neutrino interactions. 6
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