

ARENA 2008 University of Roma "Sapienza", June 26th 2008

Outline

- Overview of the SAUND Experiment
 - → SAUND II DAQ Structure
- Background Data
 - → Ocean Ambient Noise Study
- Neutrino Signal Analysis
- Ongoing Studies and Future Plans

SAUND and AUTEC

History of SAUND

SAUND II based on....
Feasibility and Sensitivity Study

- N.G. Lehtinen et al., Astroparticle Physics 17 (2002) 279-292 SAUND I Experiment
- J. Vandenbroucke et al., Astrophysical Journal 621 (2005) 301-312

7 hydrophones were used at the same site but with different hydrophones and cables

SAUND II Schematics

49 Uni-directional Hydrophone readout 20 x 50 km array

Andres Island Y UTM (KM) Wood C X UTM (KM)

SAUND II Accumulating Data

"Physics Run" started Summer 2006

~120 days data accumulation over 14 months on all 49 hydrophones

Recorded Data

On each HydrophoneNeutrino-like Waveforms

Triggering Mechanism

Stream data in and match filter shifting 1 datapoint (6.7us) at a time. If convolution is above threshold, record 1ms around event

Noise Adaptive Threshold Setting

- Target trigger rate 10 triggers/chan/min
- channel by channel, minute by minute

Background Parameters

FFT spectrum of 0.1sec every 5sec RMS value every 0.1sec adaptive threshold number of triggers every min

SAUND II Statistics/Distributions

Taken from a 1% data subset with randomly chosen time periods

SAUND I as a Benchmark

Adaptive Threshold

every minute every hydrophone

Understanding Trigger Rate Fluctuations

Does noise adaptive thresholding work?

SAUND II Sensitivity = 6.4Pa/V

Understanding Trigger Rate Fluctuations

The threshold controls the trigger rate

Threshold follows RMS Noise

Noise condition correlates (to some extent) to wind speed

Some Correlation with Wind

Not a great setup

- Wind measured 21 km away
- Direction of wind is volatile

12 hour period with Pearson product-moment correlation coefficient 0.85 at ~80 min offset (<1% for random time offsets)

SAUND I as a Benchmark

Ambient Noise Measurements

6.5 ms integrated every 5 s

SAUND II

SAUND I

Consistency of the Spectral Shape

The Ambient Noise Spectrum

Urick, "Principles of Underwater Sound" (1967)

"Sea State"
a measure of how
"rough" the ocean is.
Correlates mainly with
wind (also wave
height, whitecaps, etc)

"Knudsen Noise Region" 1kHz - 50 kHz -5to-6 dB per octave, absolute level depends on wind

Consistency of the Spectral Shape

11 twenty-four hour data periods randomly from
July to November 2006

x
49 hydrophones

539 noise spectra

$$P(f,n_s) = 10 \log(f^{-5/3}) + 94.5 + P_{ss}(n_s)$$
 sea state zero sea state dependent term Knudsen power law
$$P_{ss} = 30 \log(n_s + 1)$$

Least square fit 1kHz – 15kHz to determine Pss

P_{ss} for 539 spectra (spans 11 days, 49 locations)

Consistency of the Spectral Shape

539 "sea state subtracted" spectra (spans 11 days spread out over 6 months and 49 locations)

Faster falloff of slope after 15 kHz is a CONSISTENT feature

J. R. Short, "High-Frequency Ambient Noise and Its Impact on Underwater Tracking Ranges", IEEE Journal of Oceanic Engineering, vol 30, no 2, April 2005

*Originally published in the United States Navy Journal of Underwater Acoustics, April 1972

Because of absorption, "at deep depths and high frequencies, the noise spectrum rolls off at a much faster rate than the -5 to -6 dB/octave assumed"

PEPTH 1155

Knudsen spectra, zero sea state, as observed by an omnidirectional hydrophone

Data compared to theory

Attenuation Effect

effective noise intensity per unit band received by an omnidirectional hydrophone located at depth h

The Absorption Term: e^{-ahsecθ}

Relaxation of Boric Acid, Magnesium Sulfate, & Water

F. H. Fisher and V. P. Simmons. "Sound absorption in sea water," JASA, vol 62, no 3, (1977)

water of salinity 35 % and
$$pH=8.0$$
,
$$\alpha = A_1 f_1 f^2 / (f_1^2 + f^2) + A_2 P_2 f_2 f^2 / (f_2^2 + f^2) + A_3 P_3 f^2 m^{-1},$$
 where
$$A_1 = (1.03 \times 10^{-8} + 2.36 \times 10^{-10} \, \text{T} - 5.22 \times 10^{-12} \, \text{T}^2) \, \text{sec m}^{-1},$$
 (5)
$$f_1 = 1.32 \times 10^3 \, (\text{T} + 273.1) \, \text{exp}[-1700 / (\text{T} + 273.1)] \, \text{Hz},$$
 (6)
$$A_2 = (5.62 \times 10^{-8} + 7.52 \times 10^{-10} \, \text{T}) \, \text{sec m}^{-1},$$
 (7)
$$f_2 = 1.55 \times 10^7 \, (\text{T} + 273.1) \, \text{exp}[-3052 / (\text{T} + 273.1)] \, \text{Hz},$$
 (8)
$$P_2 = 1 - 10.3 \times 10^{-4} \, P + 3.7 \times 10^{-7} \, P^2,$$
 (9)
$$A_3 = (55.9 - 2.37 \, \text{T} + 4.77 \times 10^{-2} \, \text{T}^2 - 3.48 \times 10^{-4} \, \text{T}^3) \times 10^{-15} \, \text{sec}^2 \, \text{m}^{-1}$$
 (10) and
$$P_3 = 1 - 3.84 \times 10^{-4} \, P + 7.57 \times 10^{-8} \, P^2,$$
 (11) where f is in Hz, T in degrees centigrade and P is in

atm. To convert α to dB/km, multiply by 8,686.

Comparing Data to Theory

 $\frac{10 \log \{J_0(0) / 1\mu Pa^2\}}{\text{Knudsen Spectra}} + \frac{10 \log \{J_0(ah) / J_0(0)\}}{\text{Term to Calculate}}$ power law + P_{ss} *

 $^*P_{_{SS}}$ fitted independently after calculation

Results

$$J_0(a, h) =$$

$$2\pi J_{\infty} \int_{0}^{\pi/2} \cos^{n-1}\theta e^{-ah\sec\theta} g(\theta, f) \sin\theta d\theta$$

Introduce new term g is the response function of the hydrophone

- not perfectly omnidirectional
- freq response not perferctly flat

Kurahashi and Gratta arXiv:0712.1833v1 [physics.ao-ph] Submitted to JASA, Dec 2007

A Closer Look at a Subset of Data

0.5% of data
Randomly chosen in time
(collection of 10 second
windows of all 49 channels)

extract neutrino-like events out

Weiner Filter Signal-to-Noise

SNR
$$p = \frac{\int df}{\int S_n(f)} \frac{\widetilde{S}(f) \widetilde{h}^*(f)}{S_n(f)}$$
 $\int \int df \frac{|\widetilde{h}(f)|^2}{S_n(f)}$

normalization

Take a look at the trigger value

Signal-to-Noise

After some further "cuts" such as

- Enough high frequency components (to remove loud low freq event)
- Not mono-frequency

Monte Carlo Events for Efficiency Study

Assuming a diffuse incoming flux, right angular/spacial distribution using ANIS

SAUND II Project

Naoko Kurahashi (Stanford University) Giorgio Gratta (Stanford University)

Funded by NSF

Consultation

Scripps Institution of Oceanography

→ Mike Buckingham

Naval Postgraduate School

→ Daphne Kapolka

University of California, Berkeley

→ Justin Vandenbroucke

Massachusetts Institute of Technology

→ Sam Waldman

Stanford University

→ Nikolai Lehtinen

Support

Naval Undersea Warfare Center, United States Navy

- → Dave Deveau
- →Trevor Kelly-Bissonnette

.... and many other US Navy related people that supported us on base

Consistency of the Spectral Shape

Check: Is the averaging over 24 hours (17280 spectra) washing out a daily feature? Can the deviation form the power law be explained by an intermittent source?

Once again, faster falloff of slope after 15 kHz is a CONSISTENT feature