Acoustic noise in deep ice and environmental conditions at the South Pole

bmb+f - Förderschwerpunkt Astroteilchenphysik Großgeräte der physikalischer Grundlagenforschung ARENA 2008 25-27 June 2008 in Rome

Noise measurement in SPATS

- Absolute level?
- Temporal variation?
- Transient rate / sources?
- Noise runs taken every hour
- Unbiased monitoring
 - forced readout of all 3 channels of a sensor
 - sampling rate 200 kHz
 - loop over all sensors
 - Transient runs
 - 3 sensors per string (190 m, 250 m, 320 m)
 - threshold ~4.8 σ (Noise RMS)
 - record 5 ms @ 200 kHz around every trigger

Noise is Gaussian

T. Karg (U Wuppertal)

Temporal evolution

- String D: deployed 24 Dec 2007
- RMS very stable over time
 - large peaks correlated with IceCube drilling
- RMS increases during freeze-in
 - better coupling to bulk ice
 - increased sensitivity at low temperatures

Evolution with depth

- SPATS self noise well below noise level
- Voltage noise level decreases with depth

T. Karg (U Wuppertal)

T. Karg (U Wuppertal)

Spectra dominated by sensor properties

- SPATS Sensor
- Piezos coupled to steel housing
- Many resonance modes

- HADES Sensor
- Piezo coated in resin
- Single resonance
 @ 49 kHz

Absolute noise -Environmental conditions are important

- Rapid freeze-in
- Signal amplitudes change during freeze-in
 - Better coupling of sensor / transmitter to ice?
 - Increased sensitivity at low temperatures?
 - Transmission decreases due to bad ice quality?
- Measurements of sensitivity change planned:
 - in pressure chamber
 - in ice

Ice Quality: Lab studies

SPATS freeze-in studies:

- "Hole-ice" properties potentially important
- Non-isotropic appearance of bubbles and micro-cracks
- Laboratory studies give first clue of influence on sensitivity
- Observe "arbitrary" absorption of transmitted and received signals
- In-situ calibration necessary

T. Karg (U Wuppertal)

Calibration

- Only lab calibration available
- All sensors calibrated in water at room temperature
- Sensitivity in -50°C air is 1.4 times sensitivity at room temperature
- Influence of pressure and coupling to ice under study

- Sensitivity above 50 kHz very low
 - ▶ use 10 kHz 50 kHz band
- Integral over PSD gives noise RMS

Noise depth profile

- Assumption: Pole sensitivity = 1.4 Lab sensitivity
- Error bars only represent sensor to sensor variations
- Noise consistent between different strings

T. Karg (U Wuppertal)

Transient data taking and analysis

- Distribution of sources in time and space?
- Pulse shapes?
- Significant neutrino backgrounds?
- Anything else interesting? ice cracking, glacier stick/slip, …
- Multi-channel long duration threshold triggered runs underway now at Pole

Run C194847 Event 1 (CS2-2, 070306 08:16:29) 4 3 2 Voltage (V) -2 -3 transient example -4 2 6 8 10 12 0 Δ time (ms)

Will search for coincidences and attempt source location

Background transients

Loud examples:

• Rate: ~1 / minute / channel

SPATS hears the IceCube drill!

T. Karg (U Wuppertal)

Summary and Outlook

- SPATS measured 1.5 years of noise data
- Acoustic background is
 - Gaussian
 - stable over time
- Measurements indicate absolute noise level < 10 mPa (10 kHz - 50 kHz, below firn)
- Sensor calibration in pressure chamber under preparation
- SPATS starting to operate as an event detector
 - spatial and temporal distribution of transients

Comparison with other experiments

T. Karg (U Wuppertal)

Calculated acoustic radiation pattern in ice

T. Karg (UARENAertal)

Acoustic noise justin Vandenbroutike South Pole

18