

Damping Ring Alternative Design Options

FCCee Pre-Injector: CHART Collaboration Meeting 20th and 21st of April, 2023

LNF, Frascati, Italy

Ozgur ETISKEN* and Catia Milardi

Thanks to: P. Raimondi, P. Craievich, K. Oide, T. Raubenheimer, F. Zimmermann, A. Santis for their useful discussions

*ozgur.etisken@cern.ch

• Review of the "CDR" and "after CDR" version of the DR

- Reasons to look for an alternative design for the DR
- DR Requirements
- Alternative options:
 - * Regular FODO with different combination of insertion devices,
 - * DBA and TBA,
 - * Reversed bend FODO,
 - * Combined function magnet.
- Comparison of different evaluated options
- Higher energy DR
- Summary and next steps

ozgur.etisken@cern.ch

Content

Review of "CDR" version of the DR

ParametersValueCircumference242 mEnergy1.54 GeVBunch intensity2.1E10mber of trains x bunches in a train8 x 2 bunchesTransverse Damping Time10.5 msStore time for a train40 msEnergy loss per turn0.225 MeVSR Power loss15.7 kW		
Circumference242 mEnergy1.54 GeVBunch intensity2.1E10mber of trains x bunches in a train8 x 2 bunchesTransverse Damping Time10.5 msStore time for a train40 msEnergy loss per turn0.225 MeVSR Power loss15.7 kW	Parameters	Value
Energy1.54 GeVBunch intensity2.1E10mber of trains x bunches in a train8 x 2 bunchesTransverse Damping Time10.5 msStore time for a train40 msEnergy loss per turn0.225 MeVSR Power loss15.7 kW	Circumference	242 m
Bunch intensity2.1E10mber of trains x bunches in a train8 x 2 bunchesTransverse Damping Time10.5 msStore time for a train40 msEnergy loss per turn0.225 MeVSR Power loss15.7 kW	Energy	1.54 GeV
mber of trains x bunches in a train8 x 2 bunchesTransverse Damping Time10.5 msStore time for a train40 msEnergy loss per turn0.225 MeVSR Power loss15.7 kW	Bunch intensity	2.1E10
Transverse Damping Time10.5 msStore time for a train40 msEnergy loss per turn0.225 MeVSR Power loss15.7 kW	mber of trains x bunches in a train	8 x 2 bunches
Store time for a train40 msEnergy loss per turn0.225 MeVSR Power loss15.7 kW	Transverse Damping Time	10.5 ms
Energy loss per turn0.225 MeVSR Power loss15.7 kW	Store time for a train	40 ms
SR Power loss 15.7 kW unit cell	Energy loss per turn	0.225 MeV
	SR Power loss	15.7 kW

- FODO lattice

- Racetrack layout (each arc has 57 units) - Dipoles: 21cm, 0.66 T, 1.552 degree - Phase advance in the arc is $69.5^{\circ}/66^{\circ}$ (h/v) - 2+2 wigglers in straight sections (each 6.64 m) - Total wiggler length is 26.56 m - 1.8T magnetic field
- Eq. emittance including wiggler magnet is 0.96 nm.rad (without IBS) (it growths to 2 nm.rad with IBS)

S. Ogur, K. Oide et. al.

• The design is modified to comply with the changing requirements (damping time mainly) after CDR.

ozgur.etisken@cern.ch

Review of "after CDR" version of the DR

Review of "after CDR" version of the DR

• The design is modified to comply with the changing requirements (damping time mainly).

Parameters
Bending magnet quantity
Dipole magnet length [m]
Bending angle [degree]
Dipole magnetic field [T]
Filling factor
Damping wiggler magnet [m/T]
Robinson wiggler magnet [m / T]
Circumference [m]
Emittance [nm.rad] (inlc. IBS)
Damping time
Energy loss per turn

A lot of elements and very long damping wiggler magnet were used

CDR	After CDR
232	212
0.21	0.21
1.55	1.69
0.66	0.72
0.2	0.15
26.5 m / 1.8 T	68 m / 1.8 T
-	-
242 m	270 m
2 nm.rad	2.76 nm.rad
10.5 ms	5.9 ms
0.255 MeV	0.47 MeV

Lots of elements were used and the design is not providing required parameters, anymore.

O. Etisken - 21/04/2023, LNF, Frascati, Italy

<u>Reasons to revise the DR design:</u>

- complicate installation and alignment procedures.)
- **Magnetic field** (there is no obstacle to make it higher: 0.66 T dipole magnet field)
- Long damping wiggler (revised design after CDR included 68 m, CDR version had 26.56 m)
- **Not optimum phase advance** were chosen for the beam emittance damping
- CDR version is not providing the required parameters (not anymore).

New approach:

- Higher magnetic field which makes damping time shorter (positive)
- Less magnets (positive) which make larger emittance (negative)
- Optimum phase advance for the FODO lattice (positive and negative)
- Three straight sections (positive)
- Robinson wiggler may be used (introduced options with and without RW in the following slides).

INFN Consideration for a new DR Layout (

A large number of elements were used in the DR (232 dipole magnets were used: which determines high number of components such as: quadrupoles, sextupoles, octupoles, steering magnets, and beam diagnostics high realization costs,

Straight sections: 2 straight sections were allocated (3 SS might be better in terms of NLD and for insertion devices)

O. Etisken - 21/04/2023, LNF, Frascati, Italy

Summary and next steps of the previous meetings

26
-

Feedback from the meeting in December:

- The layout with three SS and having higher dipole magnetic field
- However, the magnetic field of the dipole magnets should not be higher than 1.5 T,
- New requirement for emittance should be met.

- Emittance should be reduced to 2 nm.rad.
- In addition, based on internal discussions, we have also evaluated different options.

		بها حضيه مستحقيه بين والما يتها بيها	
CDR	After CDR	Option - 0	
232	212	72*	
0.21	0.21	0.28	
1.55	1.55	5	
0.66	0.66	1.8	
0.2	0.19	0.07	
5.5 m / 1.8 T	68 m / 1.8 T	18 m / 2 T	
-	-	3.8 m / 1.1 T	
242 m	240 m	257.31 m	
2 nm.rad	2.76 nm.rad	4.89 nm.rad	
10.5 ms	5.9 ms	6 ms	
0.255 MeV 0.47 MeV		0.253 MeV	

Reminder: when we provided this option, the requirements were different.

In this regard, we have continued to revise the new layout with the following "new" required parameter changes:

- design.
- the DR design:

Required Parameters
Energy [GeV]
Circumference [m]
Stored time [ms]
Damping time (hor.) [ms]
Extraction geo. emittance (hor.) [nm.rad]
Number of bunches
Energy spread @ extraction [%] (rms.)
Injection type
Number of straight sections
Injected Parameters
Injected emittance (h) (e-/e+) [nm.rad/µm.rad]
Injected emittance (v) (e-/e+) [nm.rad/µm.rad]
Injected momentum spread [%] (e-/e+) (rms.)
Injected bunch length (e-/e+) (mm)

ozgur.etisken@cern.ch

INFN Clarification/updating of the required parameters

Before we start to proceed on the existing design or to provide alternative designs, a good definition of the required parameters should be determined clearly. Some of the parameters are crucial to be able to provide a

Based on many discussions, the following table summarizes the requirement parameters that we agreed on for

requirements with an optimum design:

- Using damping wiggler and Robinson wiggler magnets (Option 1),
- Option without Robinson wiggler magnet (SC DW) (Option 2),
- Checked the reversed bend magnet (Option 3),
- Checked **DBA** (Option 4),
- Checked **TBA** (Option 5),
- FODO + (relatively long) damping wiggler without SC DW or RW (Option 6)
- Recently, we started to check combined function magnet; it is still progressing (Option 7).

We have also done preliminary study for higher energies based on the discussion in Orsay during injector workshop (Option 8).

Investigated options

We have continued with our new approach to investigate several options to reach out the new

- The design of the DR composes of 3 arcs and 3 straight sections.
- Arcs consist of 11 FODO cells and each of the straight sections have 5 FODO cells Straight Section (SS) area with 5 cell;
- 3 damping wiggler are allocated (each of them is around 2 m). Straight Section (SS) area + matching area as also showing
- the Robinson wiggler which is allocated to the dispersive area (around 1.3 m).

FODO cells in one arc + matching cells

Insertion devices are distributed to protect the periodicity

Rest of the SS

.....

FODO cells in one arc + matching cells FODO cells in one arc + matching cells

Option 1: DR with DW and RW

ParametersImage: search of the se		
Bending magnet quantityImage: Second Sec	Parameters	
Dipole magnet length [m]Image: Constraint of the constraint	Bending magnet quantity	
Bending angle [degree]Image: Second Seco	Dipole magnet length [m]	
Dipole magnetic field [T]IFilling factorIDamping wiggler magnetIRobinson wiggler magnetICircumferenceIEmittanceIDamping timeIEnergy loss per turnI	Bending angle [degree]	
Filling factorIDamping wiggler magnetIRobinson wiggler magnetICircumferenceIEmittanceIDamping timeIEnergy loss per turnI	Dipole magnetic field [T]	
Damping wiggler magnet2Robinson wiggler magnetCircumferenceEmittanceDamping timeEnergy loss per turn	Filling factor	
Robinson wiggler magnetImage: CircumferenceCircumferenceImage: CircumferenceEmittanceImage: CircumferenceDamping timeImage: CircumferenceEnergy loss per turnImage: Circumference	Damping wiggler magnet	20
CircumferenceEmittanceDamping timeEnergy loss per turn	Robinson wiggler magnet	
EmittanceDamping timeEnergy loss per turn	Circumference	
Damping time Energy loss per turn	Emittance	
Energy loss per turn	Damping time	
	Energy loss per turn	

ozgur.etisken@cern.ch

			A state to all all and the
CDR	After CDR	New (option - 0)	New (option - 1)
232	212	72	84
0.21	0.21	0.28	0.3
1.55	1.55	5	4.28
0.66	0.66	1.8	1.27
0.2	0.19	0.07	0.09
6.5 m / 1.8 T	68 m / 1.8 T	18 m / 2 T	18 m / 1.8 T
-	-	3.8 m / 1.1 T	3.8 m / 1.8 T
242 m	240 m	257.31 m	280.23 m
2 nm.rad	2.76 nm.rad	4.89 nm.rad	2.12 nm.rad
10.5 ms	5.9 ms	6 ms	5.7 ms
0.255 MeV	0.47 MeV	0.253 MeV	0.23 MeV
			Real Provide Street

It provides all the required parameters; however, We continued our study to find an option without Robinson wiggler

Option 2 - DR with SC DW (Without RW)

20

CDR	After CDR	New (option - 0)	New (option - 1)	New (option -
232	212	72	84	84
0.21	0.21	0.28	0.3	0.4
1.55	1.55	5	4.28	4.28
0.66	0.66	1.8	1.27	1.27
0.2	0.19	0.07	0.09	0.12
6.5 m / 1.8 T	68 m / 1.8 T	18 m / 2 T	18 m / 1.8 T	12 m / 4 .4 T
-	-	3.8 m / 1.1 T	3.8 m / 1.8 T	-
242 m	240 m	257.31 m	280.23 m	262.92 m
2 nm.rad	2.76 nm.rad	4.89 nm.rad	2.12 nm.rad	2.06 nm.rad
10.5 ms	5.9 ms	6 ms	5.7 ms	6.1 ms
0.255 MeV	0.47 MeV	0.253 MeV	0.23 MeV	0.439 MeV

It provides all the required parameters; however, We continued our study to find an option without superconducting magnet

We have continued to investigate if we can find another solution without SC wiggler and RW.

• Reversed bend magnet FODO cell: one of the bends in the ordinary FODO is reversed in its bend direction while preserving the bend radius.

So, after a quick check, we understood that the reverse bend lattice could be used to reduce the damping time well, but it is not very correct for the emittance. As a result, if we use reverse bend, we need to use insertion devices like we did for FODO.

ozgur.etisken@cern.ch

ta 2	10/0	10 / -1	10 / -2	10 / -3	10 / -4	10 / -5	10 / -6	10 / -7	10 / -8
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
m.rad)	12.7	10.99	9.73	9.08	9.07	9.65	10.74	12.28	14.19
e (ms)	7.06	6.95	6.70	6.35	5.92	5.46	4.99	4.53	4.09
turn (MeV)	0.0048	0.0048	0.0050	0.0052	0.0055	0.0060	0.0065	0.0071	0.0079
nd (%)	0.077	0.076	0.076	0.075	0.074	0.074	0.074	0.074	0.075

eta 2	5 / 5	4.5 / 4.5	4/4	3.5 / 3.5	3/3	2.5 / 2.5
	0	0	0	0	0	0
nm.rad)	7.10	5.16	3.16	2.41	1.51	0.87
ne (ms)	13.93	17.12	21.59	28.10	38.14	54.78
/turn (MeV)	0.0024	0.0019	0.0015	0.0011	0.0008	0.0006
ad (%)	54	52	49	45	42	38

Parameters	FCC-DR
Energy [GeV]	1.54 GeV
Lattice type	DBA
Lattice length [m]	4.4
Bending angle [degree]	4
Emittance [nm.rad]	1.25 nm.rad
Damping time [ms]	29.2
Energy loss per turn	1.54 MeV
Energy spread [%]	0.04

ozgur.etisken@cern.ch

Option 4 and 5: DBA and TBA

Parameters	FCC-DR
Energy [GeV]	1.54 GeV
Lattice type	TBA
Lattice length [m]	11.4
Bending angle [degree]	6
Emittance [nm.rad]	1.63
Damping time [ms]	36.19
Energy loss per turn [MeV]	3.2
Energy spread [%]	0.05

- Based on analytical and numerical calculations, a new layout are provided for the DR. • The design of the DR composes of 3 arcs and 3 straight sections. • Arcs consist of 9 FODO cells and each of the straight sections have 5 FODO cells

the periodicity

FODO cells in one arc + matching cells

- Based on analytical and numerical calculations, a new layout are provided for the DR.
- The design of the DR composes of 3 arcs and 3 straight sections.
- Arcs consist of 9 FODO cells and each of the straight sections have 5 FODO cells

- Based on analytical and numerical calculations, a new layout are provided for the DR. • The design of the DR composes of 3 arcs and 3 straight sections. • Arcs consist of 9 FODO cells and each of the straight sections have 5 FODO cells

Straight Section (SS) area with 5 cell; • 3 cells include damping wiggler (each of them is around 2 m).

Straight Section (SS) area + matching area as also showing

ozgur.etisken@cern.ch

Parameters	CDR	After CDR	Option - 0	Option - 1	Option - 2	Option - 6
Bending magnet quantity	232	212	72	84	84	78
Dipole magnet length [m]	0.21	0.21	0.28	0.3	0.4	0.4
Bending angle [degree]	1.55	1.55	5	4.28	4.28	4.61
Dipole magnetic field [T]	0.66	0.66	1.8	1.27	1.27	1.03
Filling factor	0.2	0.19	0.07	0.09	0.12	0.15
Damping wiggler magnet	26.5 m / 1.8 T	68 m / 1.8 T	18 m / 2 T	18 m / 1.8 T	12 m / 4 .4 T	36.45 m / 2
Robinson wiggler magnet	-	-	3.8 m / 1.1 T	3.8 m / 1.8 T	-	-
Circumference	242 m	240 m	257.31 m	280.23 m	262.92 m	248.19 m
Emittance	2 nm.rad	2.76 nm.rad	4.89 nm.rad	2.12 nm.rad	2.06 nm.rad	2.1 nm.rad
Damping time	10.5 ms	5.9 ms	6 ms	5.7 ms	6.1 ms	8.1 s
Energy loss per turn	0.255 MeV	0.47 MeV	0.253 MeV	0.23 MeV	0.439 MeV	0.31 MeV

- Summary

|--|

O. Etisken - 21/04/2023, LNF, Frascati, Italy

Option 7: Combined function magnet

Higher energy damping ring discussion

- Dedicated linac for electron and positron up to 2.42, 2.86, or 3.30 GeV. —
- No return arc for positron/electron beams \rightarrow it is easier to preserve emittance (no trivial issue)
- DR for both electrons and positrons. In principle a higher charge with higher emittance from the photo-injector is possible because can be dumped in DR
- Easier operation of the common linac, seconds instead of milliseconds between e+ and e- operations —
- Drawback: DR at higher energy?

ozgur.etisken@cern.ch

- SLS-2: 2.7 GeV, circumference 288 m, magnetic peak field 1.3 T, angle 3.5 deg

Based on this slide of Paolo, we have also investigated higher energy damping ring.

Option-8: Design study for 2.86 GeV option

- There were discussions for 2.42 GeV, 2.86 GeV and 3.30 GeV,
- We have provided a preliminary design for 2.86 GeV,
- We have also made a quick comparison, since it is the same energy of CLIC damping ring.
- Based on analytical and numerical calculations, a layout are provided for the 2.86 GeV option.
- The design of the DR composes of 3 arcs and 3 straight sections.
- Arcs consist of 16 FODO cells and each of the straight sections have 5 FODO cells

the periodicity

FODO cells in one arc + matching cells

Option-8: Design study for 2.86 GeV option

- There were discussions for 2.42 GeV, 2.86 GeV and 3,30 GeV,
- We have provided a preliminary design for 2.86 GeV,
- We have also made a quick comparison, since it is the same energy of CLIC damping ring.
- Based on analytical and numerical calculations, a layout are provided for the 2.86 GeV option.
- The design of the DR composes of 3 arcs and 3 straight sections.
- Arcs consist of 16 FODO cells and each of the straight sections have 5 FODO cells

ozgur.etisken@cern.ch

O. Etisken - 21/04/2023, LNF, Frascati, Italy

0.9 0.8 0.7 0.6 0.5 0.40.3 0.2 0.1

0.15m

Option-8: Design study for 2.86 GeV

Straight Section (SS) area with 5 cell; • 4 damping wiggler are allocated (each of them is around 2 m).

ozgur.etisken@cern.ch

FODO cells in one arc + matching cells

Insertion devices are distributed to protect the periodicity

FODO cells in one arc + Rest of the SS matching cells FODO cells in one arc + matching cells

O. Etisken - 21/04/2023, LNF, Frascati, Italy

.....

D (m), D (m)

A reminder: CLIC Main Damping Ring (2.86 GeV)

ozgur.etisken@cern.ch

Figure 7.24: The optics functions of the CLIC DR.

Table 7.3: List of magnetic parameters for the CLIC DRs. Pole tip field Full aperture H/V Length Number Families Type Location [m][T][mm] Arc 9680/200.97Dipoles 0.58DS-BM 376Arc 0.20 $\mathbf{2}$ $\mathbf{2}$ 1.020/20Quadrupoles LSS0.2028 + 26DS-BM 0.201224DS-BM 0.31 $\mathbf{2}$ 4 Sextupoles 20/20Arc 0.15188 + 94 $\mathbf{2}$ 0.5Wigglers LSS5280/132.002.51

Figure 7.11: Optical functions of the arc TME cell.

Option 7: A Comparison with CLIC DR

• We have also made a quick comparison, since it is the same energy of CLIC damping ring.

Parameters
Energy [GeV]
Bending magnet quantity
Quadrupole magnet quantity
Sextupole magnet quantity
Dipole magnet length [m]
Bending angle [degree]
Dipole magnetic field [T]
Filling factor
Damping wiggler magnet [m/T]
Robinson wiggler magnet [m / T]
Circumference [m]
Emittance [nm.rad]
Damping time
Energy loss per turn
Lattice type

FCC-DR	CLIC DR
2.86 GeV	2.86 GeV
132	100
186	458
96	282
0.65	0.58
2.72	3.6
0.94 T	1.03 T
0.24	0.13
24.3 m / 2 T	104 m / 2.5 T
-	_
348.72 m	427.5 m
2.15 nm.rad	0.04 nm.rad
7.1 ms	2 ms
0.92 MeV	3.98 MeV
FODO	TME

- We have been evaluating different options including different type of cell and magnet
- We will still be checking the combined function option in the following days
- One of the options will be determined and the nonlinear beam dynamics study will be started
- We are planning to show only one option with DA calculations in the FCC Week
- We have also checked the higher energy option, it may be worked in detail in future if this becomes the case

Thank you!

