FCC-ee positron capture simulation

Yongke Zhao, CERN

On behalf of the team

FCC-ee Pre-Injector: CHART collaboration meeting

21/04/2023, Frascati

Layout overview

• FC-based layout (baseline)

• HTS-based layout, V0 (alternative) – study focused on this scenario

Positron requirements

• Positron requirements

e+ parameters at DR entrance	Values	
Repetition rate	200 Hz	
No. of bunches (per train)	2	
Bunch charge (w/ 100% safety margin)	8 nC	
Energy window (@ 1.54 GeV)	±3.8%	
Time window (to be discussed)	16.7 mm/c (40° @ 2 GHz)	
No transverse cuts (to be discussed)		

To be matched to DR acceptance (in progress)

• Positron yield (accepted)

$$\eta^{e^+}_{
m Accepted} = rac{N^{e^+}_{
m DR\,accepted}}{N^{e^-}_{
m Primary}}$$

Simulation tools

- Positron production: **Geant4** (version 11.1.1)
 - Yield increased by ~0.4 after the upgrade from previous version 10.7.2 to current version. Mainly at low energy range

- Tracking in AMD & capture linac: RF-Track (version 2.1.6)
- Tracking in e⁺ lianc (longitudinally): **analytic**

 $\,\circ\,$ RF frequency same with capture linac. Reference energy around 200 MeV

$$\Delta E = (1.54 \,\text{GeV} - E_{\text{ref}}) \cdot \cos[\omega \cdot (t - t_{\text{ref}})]$$

Electron parameters

• Baseline e⁻ beam parameters:

Primary e ⁻ parameters	Values	Units
Beam energy	6	GeV
Spot size (rms)	0.5	mm
Bunch length (rms)	1	mm
Energy spread (rms)	0.1	%
Normalised trans. emittance (rms)	15	mm∙mrad
No. of bunches per train	2	
Repetition rate	200	Hz
Non-normalised beam power (1 nC e ⁻)	2.4	kW
Non-normalised beam fluence (1 nC e ⁻)	8.8×10^{10}	cm ⁻²
For η_{e^+} = 7.0, BC _{e^+} = 8 nC		
Normalised beam power	2.7	kW
Normalised beam fluence	1.0×10^{11}	cm ⁻²

Electron spot size

• Scan of e⁻ beam spot size (rms)

□ To reduce the PEDD, 1 mm spot size could be a good alternative

- o Before 1 mm, PEDD is reduced much faster than the yield
- o After 1 mm, yield reduction is faster while PEDD reduction is slower

□ Nevertheless, 0.5 mm is still used by default in following studies

21/04/2023

Target scheme

• Conventional target (baseline) – study using this scenario

Amorphous W		V	Target results	Value
0 ⁻			e ⁺ yield at target exit	14.1
е	e ' (e , <u>y</u>)		For η_{e^+} = 7.0, BC _{e^+} = 8 nC	
			Deposited power	0.7 kW
	17 5 mm		PEDD	4.2 J/g
	11.2 11111			

Advantages:

- Simple layout and placement in HTS solenoid matching device
- Higher e⁺ yield expected (due to smaller e⁺ spot size)
- PEDD no more a concern (given high yield and small No. of bunches)

PEDD < 35 J/g required

• Hybrid target (alternative) – *study in progress*

Advantages:

- Promising results (more in the <u>talk of L. Bandiera</u> or their paper: <u>arXiv:2203.07541</u>)
 - ✓ **Reduced deposited power** (~30%) and **PEDD**

(~60%), assuming the same e^+ yield, etc.

 \circ DR Accepted e⁺ yield to be estimated, etc.

Target shape

- Significant increase in e⁺ yield, using tapered target shape, found by <u>N. Vallis</u>
 (<u>PSI)</u> for P³ project with BDSIM (Geant4-based) simulation
 - Confirmed by A. Lechner (CERN) and me with Fluka and standalone Geant4 simulations
 - Contribution mainly from lateral e⁺ production (at low energy range) captured by the HTS solenoid field before deposition in target
 - Only useful for HTS-based matching device scenario
 - Cooling & shielding design and optimisation for 1 mm spot size still in progress

Target PEDD

• Mesh grid size (in Geant4): dx*dy*dz = (0.5 mm)³

Target thickness

• Scan of target thickness

0.5 mm spot size

1 mm spot size

Optimised target thickness for maximum accepted e⁺ yield is still: 17.5 mm

Target radius

- Scan of target radius
 - $\,\circ\,$ Aimed to find the minimum radius for better cooling and shielding
 - \circ Assuming that target is surrounded by the shield (no lateral e⁺ produced)

Minimum target radius (w/o significant yield loss): 5 mm

Nevertheless, 15 mm is still used by default in following studies

21/04/2023

Target misalignment

• Very preliminary test (more in prorgess)

□ The effect seems to be small (for example, 1 mm offset)

DR accepted yield to be checked. More to be studied

21/04/2023

Matching device

• FC-based (baseline)

Flux Concentrator (FC) designed by P. Martyshkin (BINP)

- Fixed target position (2-5 mm upstream), but allowing for rotating target with lower PEDD
- Lower peak field (5-7 T, 1.5-3 T at target exit)
- Smaller entrance aperture (Φ = 8-16 mm)
- Therefore, lower e⁺ yield, smaller emittance
- Designed for 100 Hz rep. rate. To be optimised for 200 Hz

HTS-based (alternative)

- study focused on this scenario

High-Temperature Superconducting (HTS) solenoid *designed by J. Kosse, B. Auchmann and M. Duda (PSI)*

- Flexible target position, but not rotatable
- \circ Higher peak field (15 T, 12 T at target exit)
- Larger aperture (warm bore: Φ = 72 mm, minimum beam aperture: Φ = 30 mm)
- Therefore, higher e⁺ yield, larger emittance

21/04/2023

Target position in HTS solenoid

Scan of target position in HTS solenoid

0.5 mm spot size

1 mm spot size

Optimised target exit position for maximum accepted e⁺ yield:

• 0.5 mm spot size: z = 35 mm

(z = 0 being HTS peak field)

• 1 mm spot size: z = 40 mm

21/04/2023

Shielding thickness in HTS solenoid

• Scan of beam aperture radius (in HTS solenoid)

 \circ Aimed to find the maximum shielding thickness (downstream target)

0.5 mm spot size

1 mm spot size

□ Minimum beam aperture radius (w/o significant yield loss): 16 mm (15 mm is also OK)

Maximum shielding thickness: 36 - 16 = 20 mm

21/04/2023

HTS fringe field

- For simplification, **upstream HTS fringe field** is not simulated
- The effect of fringe field on the results is nevertheless studied:
 - Case A: w/o upstream HTS fringe field
 - Case B: w/ fringe field in target
 - Case C: w/ fringe field in target and e⁻ beam pipe

Results	Case A	Case B	Case C
Spot size @ z = -300 mm and @ z = 17.5 mm (target entrance) [mm]	0.5, 0.5	0.5, 0.5	0.5, 0.5
Emittance x,y @ target entrance [mm.mrad]	15	15	2015
Yield @ target exit	14.1	14.2	14.1
Normalised PEDD in target [J/g]	4.2	4.2	4.2
RMS beam size @ target exit [mm]	1.16	1.14	1.15
Yield @ DR entrance	7.0	7.1	7.0
Emittance x,y @ DR entrance [mm.rad]	12.0	12.0	12.0

□ HTS fringe field effect on final results is negligible (though e⁻ beam emittance increased a lot)

Capture linac

• **Baseline** structure – *study focused on this scenario*

 \circ Larger aperture (Φ = 60 mm) TW L-band (CERN) @ 2 GHz, 9π/10, 3 m, 20 MV/m

[&]quot;F3" structure

designed by H. Pommerenke and A. Grudiev (CERN)

HTS + NC solenoids field

NC solenoids (0.5 T), designed by M. Schaer and R. Zennaro and (PSI)

- No. of structures used: 5
- Distance between structures: 240 mm
- \circ Same RF structure and NC solenoid used in e^+ linac
- For simplification, 0.5 T uniform NC field used (as the difference was found small with the realistic field)

• Alternative structures

- Normal aperture (Φ = 40 mm) TW L-band (CERN, used for CLIC) @ 2 GHz, 2 π /3, 1.5 m, 16-20 MV/m
- Normal aperture (Φ = 40 mm) SW S-band (PSI, used for P³ project) @ 2998.8 MHz, 1.5 m, 18 MV/m
- Smaller aperture (Φ = 30 mm) TW S-band @ 2856 MHz, 3 m, 20 MV/m

21/04/2023

Capture linac

- **1D field map** has been used for the **baseline structure** (larger aperture L-band)
- 2D field map was found to be helpful to reduce the energy spread and correlation in the e⁺ linac, therefore the effect is studied for capture linac

Larger-R L-band e ⁺ results	1D field map	2D field map	
Yield @ 200 MeV	8.5	8.5	
Mean energy @ 200 MeV [MeV]	195	208	
Energy spread @ 200 MeV [%]	23.4	22.4	
Accepted bunch length [mm]	3.1	2.9	
Accepted energy spread [%]	1.6	1.5	
Accepted emittance x,y [mm.rad]	12.0	12.3	
Accepted yield	7.0	7.0	

□ The difference between 1D and 2D field maps seems to be small for capture linac

Nevertheless, 1D is still used in the study (due to limited time for updates)

21/04/2023

Longitudinal phase spaces

 \circ @ 200 MeV (capture linac exit) \circ @ 1.54 GeV (DR entrance)

Results

- Comparison of some selected scenarios
 - ✓ Format: "Spot size + AMD type + Capture linac type"

Scenarios	Accepted e⁺ yield	Norm. PEDD in target [J/g]	Norm. Emitt. X,Y [mm.rad]
0.5 mm + FC (7 T) + L-band (60 mm)	4.4	6.7	11.4
0.5 mm + FC (7 T) + L-band (40 mm)	3.7	8.0	7.3
0.5 mm + FC (7 T) + S-band (40 mm)	3.3	9.0	6.7
0.5 mm + HTS + L-band (60 mm)	7.0	4.2	12.0
0.5 mm + HTS + L-band (40 mm)	5.6	5.2	7.0
0.5 mm + HTS + S-band (40 mm)	4.9	6.0	6.5
1 mm + HTS + L-band (60 mm)	6.5	1.8	13.5
1 mm + HTS + L-band (40 mm)	4.9	2.4	7.7
1 mm + HTS + S-band (40 mm)	4.2	2.9	7.1

• PEDD for FC-based scenarios can be reduced with rotating target

- L-band (40 mm) gradients & phases have been very briefly reoptimised
- More detailed parameters & results can be found at: FCC-ee CERNBox: WP3/Task3.4

21/04/2023

Summary & next steps

- Simulation results presented for many different capture scenarios
- Target optimised for maximum yield and better shielding & cooling
- Work (simulations, optimisations, shielding & cooling, e⁺ linac design, etc.) currently mainly focused on: "conventional target" + "HTS AMD" + "larger aperture L-band structure" (current layout referred to as "V1")
- Alternative e⁻ spot size (1 mm) for reduced PEDD (for HTS-based scenario)
- A new tapered target shape proposed and being studied in PSI with higher yield

• To-do's

- Reconsideration of **DR acceptances** (longitudinal & transverse)
- **FC** studies (design optimisation for 200 Hz, R&D, etc.)
- **Reoptimisations** (N_structures, gradients, phases, etc.). Difficult to reoptimise all scenarios. Once decided which scenario to use, a more detailed final reoptimisation is probably needed
- Misalignment study (beam & target, position & direction, etc.) to be continued
- \circ Etc.

BACKUP

Misalignment study (in progress)

Misalignment

- Config
 - Beam size: 0.5, 1 mm
 - Target radius: 5 mm
- Target trans. position offset
 - X0 = [0:0.2:1] mm
- Target direction offset (tilt)
 - Theta: [0:0.2:1] mrad
- Beam trans. position offset
 - X0 = [0:0.2:1] mm
- Beam direction offset
 - Theta: [0:0.2:1] mrad

NC solenoids (0.5 T), designed by M. Schaer and R. Zennaro and (PSI)