

Fundamental Physics with Nuclei

MAYORANA International Workshop

13 July 2023 Saori Pastore

https://physics.wustl.edu/quantum-monte-carlo-group

Quantum Monte Carlo Group @ WashU Lorenzo Andreoli (PD) Jason Bub (GS) Graham Chambers-Wall (GS) Garrett King (GS) Anna McCoy (FRIB TA Fellow) Maria Piarulli and Saori Pastore

Computational Resources awarded by the DOE ALCC, INCITE and SciDAC programs

Understand Nuclei to Understand the Cosmos

ESA, XMM-Newton, Gastaldello, CFHTL

The second secon

ar distances repeating up to 10,000 rates the trackar distances. If the electron cloud were shown to acits, this chart would corest a small town.

Electron-Nucleus Scattering Cross Section

Energy and momentum transferred (ω ,q)

Current and planned experimental programs rely on theoretical calculations at different kinematics

Strategy

Validate the Nuclear Model against available data for strong and electroweak observables

- Energy Spectra, Electromagnetic Form Factors, Electromagnetic Moments, ...
- Electromagnetic and Beta decay rates, ...
- Muon Capture Rates, ...
- Electron-Nucleus Scattering Cross Sections, ...

Use attained information to make (accurate) predictions for BSM searches and precision tests

- EDMs, Hadronic PV, ...
- BSM searches with beta decay, ...
- Neutrinoless double beta decay, ...
- Neutrino-Nucleus Scattering Cross Sections, ...
- ...

Microscopic (or ab initio) Description of Nuclei

Comprehensive theory that describes quantitatively and predictably nuclear structure and reactions

Requirements:

- Accurate understanding of the interactions/correlations between nucleons in **paris**, **triplets**, ... (two- and three-nucleon forces)
- Accurate understanding of the electroweak interactions of external probes (electrons, neutrinos, photons) with nucleons, correlated nucleon-pairs, ... (one- and two-body electroweak currents)
- **Computational methods** to solve the many-body nuclear problem of strongly interacting particles

Erwin Schrödinger

 $H\Psi = E\Psi$

Many-body Nuclear Problem

Nuclear Many-body Hamiltonian

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_A,\mathbf{s}_1,\mathbf{s}_2,...,\mathbf{s}_A,\mathbf{t}_1,\mathbf{t}_2,...,\mathbf{t}_A)$$

$$\Psi$$
 are spin-isospin vectors in 3A dimensions with $2^A \times \frac{A!}{Z!(A-Z)!}$ components
⁴He : 96
⁶Li : 1280
⁸Li : 14336
¹²C : 540572

(numerically) exactly or within approximations that are under control the many-body nuclear problem

Current Status

Many-body Nuclear Interactions

Many-body Nuclear Hamiltonian

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

 v_{ij} and V_{ijk} are two- and three-nucleon operators based on experimental data fitting; fitted parameters subsume underlying QCD dynamics

Contact term: short-range Two-pion range: intermediate-range $r\propto (2\,m_\pi)^{-1}$ One-pion range: long-range $r\propto m_\pi^{-1}$

Hideki Yukawa

AV18+UIX; AV18+IL7 Wiringa, Schiavilla, Pieper *et al.*

chiral πNΔ N3LO+N2LO Piarulli *et al.* Norfolk Models

Optimization of Nuclear Two-body Interactions

Energies

Piarulli et al. PRL120(2018)052503

Many-body Nuclear Electroweak Currents

- Two-body currents are a manifestation of two-nucleon correlations
- Electromagnetic two-body currents are required to satisfy current conservation

$$\mathbf{q} \cdot \mathbf{j} = [H, \rho] = [t_i + v_{ij} + V_{ijk}, \rho]$$

Nuclear Charge Operator

$$\rho = \sum_{i=1}^{A} \rho_i + \sum_{i < j} \rho_{ij} + \dots$$

Nuclear (Vector) Current Operator

Magnetic Moment: Single Particle Picture

Many-body Currents

• Meson Exchange Currents (MEC)

Constrain the MEC current operators by imposing that the current conservation relation is satisfied with the given two-body potential

Chiral Effective Field Theory Currents

Are constructed consistently with the two-body chiral potential; Unknown parameters, or Low Energy Constants (LECs), need to be determined by either fits to experimental data or by Lattice QCD calculations

Electromagnetic Current Operator

SP *et al.* PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001, PRC87(2013)014006 Park *et al.* NPA596(1996)515, Phillips (2005) Kölling *et al.* PRC80(2009)045502 & PRC84(2011)054008

Magnetic Moments of Light Nuclei

Electromagnetic Observables

PRC101(2020)044612

e-⁴He particle scattering

Axial currents with Δ at tree-level

Two body currents of one pion range (red and blue) with $c_3 c_4$ from Krebs *et al.* Eur.Phys.J.(2007)A32

Contact current involves the LEC c_p

P. Gysbers Nature Phys. 15 (2019)

 $|M_{\rm GT}|$ ratio to experiment

 ${}^{8}\mathrm{He}_{0} \rightarrow {}^{8}\mathrm{Li}_{1}$

Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay Matrix Elements

 ν π $\pi\pi$ NN

Cirigliano Dekens DeVries Graesser Mereghetti *et al.* PLB769(2017)460, JHEP12(2017)082, PRC97(2018)065501

- Leading operators in neutrinoless double beta decay are two-body operators
- These observables are particularly sensitive to short-range and two-body physics
- Transition densities calculated in momentum space indicate that the momentum transfer in this process is of the order of q ~ 200 MeV

Comparison with Shell-Model Calculations

X. Wang et al. PLB798(2019)134974

Closer agreement between Shell-Model calculations with Variational Monte Carlo results is reached by

- Increasing the size of the model space
- Wood-Saxon single particle wave functions are superion in describing the tails of the densities wrt harmonic oscillator wave functions
- Phenomenological Short-Range-Correlations functions further improve the agreement

Correlations in neutrinoless double beta decay ME

Partial muon capture rates: VMC calculations

$$\Gamma_{VMC}(avg.) = 1495 \text{ s}^{-1} \pm 19 \text{ s}^{-1}$$

 $\Gamma_{expt} = 1496.0 \text{ s}^{-1} \pm 4.0 \text{ s}^{-1}$

Ackerbauer et al. PLB417, 224(1998)

Momentum transfer q~ 100 MeV

Two-body correction is \sim 8% of total rate on average for A=3

Garrett King et al. PRC2022

Review by Measday Physics Reports 354 (2001) 243-409

 ${}^{3}\text{He}(1/2^{+};1/2) \rightarrow {}^{3}\text{H}(1/2^{+};1/2)$

Partial muon capture rates: VMC calculations

$$\Gamma_{VMC}(avg.) = 1235 \text{ s}^{-1} \pm 101 \text{ s}^{-1}$$

$$\Gamma_{GFMC}(IIa^*) = 1171 \text{ s}^{-1} \pm 164 \text{ s}^{-1}$$

$$\Gamma_{expt} = 1600 \text{ s}^{-1} + 330/-129 \text{ s}^{-1}$$

Deutsch *et al.* PLB26(1968)315

Garrett King et al. PRC2022

With FRIB experimentalist colleagues: Gamow-Teller strength in A=11; Schmitt et al. PRC106(2022)

$${}^{6}\mathrm{Li}(1^{+};0) \rightarrow {}^{6}\mathrm{He}(0^{+};1)$$

Neutrino cross section anatomy

Formaggio & Zeller

Quasi-elastic: dominated by single-nucleon knockout

Resonance: excitation to nucleonic resonant states which decay into mesons

Deep-inelastic scattering: where the neutrino resolves the nucleonic quark content

Each of these regimes requires knowledge of both the **nuclear ground state** and the **electroweak coupling** and **propagation of the struck nucleons, hadrons, or partons**

A challenge for achieving precise neutrino-nucleus cross-section is **reliably bridging the transition regions which use different degrees of freedom**

Lepton-Nucleus scattering: Inclusive Processes

Electromagnetic Nuclear Response Functions

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) |\langle f|O_{\alpha}(\mathbf{q})|0\rangle|^2$$

Longitudinal response induced by the charge operator $O_L = \rho$ Transverse response induced by the current operator $O_T = j$ 5 Responses in neutrino-nucleus scattering

$$\frac{d^2 \sigma}{d \,\omega d \,\Omega} = \sigma_M \left[v_L \, R_L(\mathbf{q}, \omega) + v_T \, R_T(\mathbf{q}, \omega) \right]$$

For a recent review on QMC, SF methods see Rocco Front. In Phys.8 (2020)116

Lepton-Nucleus scattering: Data

5

Transverse Sum Rule

 $S_T(q) \propto \langle 0 | \mathbf{j}^{\dagger} \mathbf{j} | 0 \rangle \propto \langle 0 | \mathbf{j}_{1b}^{\dagger} \mathbf{j}_{1b} | 0 \rangle + \langle 0 | \mathbf{j}_{1b}^{\dagger} \mathbf{j}_{2b} | 0 \rangle + \dots$

Observed transverse enhancement explained by the combined effect of two-body correlations and currents in the interference term

$$\langle \mathbf{j}_{1b}^{\dagger} \ \mathbf{j}_{1b} \rangle > 0$$

Leading one-body term

$$\langle \mathbf{j}_{1b}^{\dagger} \; \mathbf{j}_{2b} \; v_{\pi} \rangle \propto \langle v_{\pi}^2 \rangle > 0$$

Interference term

Transverse/Longitudinal Sum Rule Carlson *et al.* PRC65(2002)024002

Beyond Inclusive: Short-Time-Approximation

Short-Time-Approximation Goals:

- Describe electroweak scattering from A
 > 12 without losing two-body physics
- Account for exclusive processes
- Incorporate relativistic effects

Subedi et al. Science320(2008)1475

Stanford Lab article

Short-Time-Approximation

Short-Time-Approximation:

- Based on Factorization
- Retains two-body physics
- Correctly accounts for interference

$$R(q,\boldsymbol{\omega}) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} \,\mathrm{e}^{i(\boldsymbol{\omega}+E_0)t} \,\langle 0|O^{\dagger}\,\mathrm{e}^{-iHt}\,O|0\rangle$$

$$O_i^{\dagger} e^{-iHt} O_i + O_i^{\dagger} e^{-iHt} O_j + O_i^{\dagger} e^{-iHt} O_{ij} + O_{ij}^{\dagger} e^{-iHt} O_{ij}$$

$$H \sim \sum_i t_i + \sum_{i < j} v_{ij}$$

Short-Time-Approximation

Short-Time-Approximation:

- Based on Factorization
- Retains two-body physics
- Response functions are given by the scattering from pairs of fully interacting nucleons that propagate into a correlated pair of nucleons
- Allows to retain both two-body correlations and currents at the vertex
- Provides "more" exclusive information in terms of nucleon-pair kinematics via the Response Densities

Response Functions ∞ Cross Sections

$$R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \left|\langle f | O_{\alpha}(\mathbf{q}) | 0 \rangle\right|^2$$

Response *Densities*

$$R(q,\omega) \sim \int \delta \left(\omega + E_0 - E_f\right) dP' dp' \mathcal{D}(p',P';q)$$

P' and *p*' are the CM and relative momenta of the struck nucleon pair

Transverse Response Density: *e*-⁴He scattering

Transverse Density q = 500 MeV/c

SP et al. PRC101(2020)044612

e-⁴He scattering in the back-to-back kinematic

SP et al. PRC101(2020)044612

GFMC SF STA: Benchmark & error estimate

Lorenzo Andreoli, et al. PRC 2021

¹²C Response Densities

Lorenzo Andreoli et al. in preparation

¹²C cross sections

NC processes on deuteron with STA

Garrett King et al. in preparation

Summary

Ab initio calculations of light nuclei yield a picture of nuclear structure and dynamics where many-body effects play an essential role to explain available data.

Transverse Density q = 570 MeV

Comp, Expt, ... are required to progress e.g., NP is represented in the Snowmass process

It's a very exciting time!

Nuclear Theory for New Physics NP&HEP TC

Nuclear Theory for New Physics

About Us

- Commitment to Diversity
- Funding Acknowledgement

Snowmass:

Topical groups and Frontier Reports, Whitepapers, ...

LRP: White papers, 2301.03975, FSNN,

. . .

Funding Acknowledgement

We are funded in part through The Department of Energy, Office of Science, Office of Nuclear Physics and the Office of High Energy Physics

Collaborators

WashU: Andreoli Bub Chambers-Walls King McCoy Piarulli

LANL: Baroni Carlson Cirigliano Gandolfi Hayes Mereghetti JLab+ODU: Schiavilla Gnech ANL: Lovato Rocco Wiringa UCSD/UW: Dekens Pisa U/INFN: Kievsky Marcucci Viviani Salento U: Girlanda Huzhou U: Dong Wang Fermilab: Gardiner Betancourt MIT: Barrow

Theory Alliance facility for rare isotope beams

Quantum Monte Carlo Group for Nuclear Physics

https://physics.wustl.edu/quantum-monte-carlo-group

Jason Bub Graduate Student

jason.bub@wustl.edu

Garrett King Graduate Student

kingg@wustl.edu

Anna McCoy FRIB Theory Fellow

Lorenzo Andreoli Postdoctoral Research Associate

landreoli@wustl.edu

&