REVELING THE NEUTRINO SKY: A DECADE OF ICECUBE'S OBSERVATIONS

S. Toscano on behalf of the IceCube Collaboration iihe UIB fnis

MAYORANA 2023

MAYORANA 2023

Multiwavelength Crab

From multiwavelength to *multimessenger astronomy*

The window to the extreme Universe

Neutrino astronomy: The multi-messenger connection

NOW 2022

Admunsen-Scott South Pole Station

Geographic South Pole

IceCube outline

5,160 Digital Optical Modules (DOMs)

86 string with 60 DOMs each

6 denser strings called DeepCore

1 km² surface array with 324 DOMs: IceTop

Completion in December 2010

Northern

Sky

Detection principle

 V_{μ}

Southern Sky

MAYORANA 2023

IceCube detects Cherenkov radiation from secondary charged particles

Credit: J. A. Aguilar

Track topology

- Good angular resolution 0.1° 1°
 Heutrino Astronomy
- Vertex can be outside the detector -> Increased
 effective volume

Cascade topology

- All flavors
- Fully active calorimeter ->
 Good energy resolution
 ±15% deposited energy
- Angular reconstruction
 possible -> ~10° > 100 TeV

MAYORANA 2023

You just saw 10 msec of IceCube data!

High Energy Starting Events (HESE)

Hybrid (tracks and cascades) - 4π

MAYORANA 2023

Searching for astrophysical neutrinos

Up-going through-going muons travelled through the Earth

Diffuse-v_µ sample (Northern Sky)

A History of Neutrino Astronomy in Antarctica

Identified

The discovery of astrophysical neutrinos

physicsworld

BREAKTHROUGH OF THE YEAR 2013

Only 2 years of data to find evidence of astrophysical neutrinos!

- E² Φ: ~1.2 x 10⁻⁸ E⁻² [GeV/cm²/s/sr]
- Best fit spectral index: -2.2
- 28 events (expected ~ 10) background events)
- Significance ~ 4σ

MAYORANA 2023

Astrophysical neutrinos: diffuse flux

Aartsen et al (IceCube Coll.) Science 342, 1242856 (2013)

Astrophysical neutrinos: power law

Several analysis confirm the detection at $> 5\sigma$

Comparison difficult since datasets have different energy cuts and select different morphologies (hemispheres)

MAYORANA 2023

Global fit to unify all detection channels and test tensions between results

Where are the source of neutrinos?

MAYORANA 2023

The galaxy in gamma-rays

Total Diffuse Galactic Emission

- Cosmic-ray interactions with the ISM dominate the diffuse γ-ray emission of the Galaxy!
- If pions are produced, also neutrinos should produced.
- Much of the Galactic
 Center in the Southern Sky
 - Large muon atmospheric background

M. Ackermann et al 2012 ApJ 750 3

- Deep Neural Networks improves angular resolutions for cascade a factor 2 at TeV.
- in Southern Sky by reconstructing even partially contained events.

MAYORANA 2023

ICECUBE NEUTRING OBSERVATORY Improved cascade reconstruction

ICECUBE NEUTRIND DESERVATORY OUR GALAXY IN DESERVATORY

MAYORANA 2023

Science 380(6652):1338-1343

We observe the Galactic plane in >TeV neutrinos: 4.5σ

- Only 6–13% of the total cosmic neutrino flux reaches us from our own Galaxy (30 TeV)
- The nearby sources from our own Galaxy do not outshine the neutrino flux from the Universe
 - Powerful accelerators operate in galaxies other than our own

MAYORANA 2023

ICECUBE MUltimessenger astronomy

E = 290 TeVIceCube-170922A

Science 13 Jul 2018: Vol. 361, Issue 6398

- since April 2016
- Sep 22 2017: An alert on was sent corresponding to a high energy event 300 TeV

MAYORANA 2023

An alert system based on HESE track-like events and Extreme High Energy events. Operating

Archival neutrino search find an excess between September 2014 and March 2015: background only hypothesis rejected at **3.5** [Science 361 (2018) 147-151].

CECUBE | Neutrino emission from TXS 0506+056

- Located at R.A. 40.69° and Dec. 0.09°.
- $\hat{n} = 81$
- $-\hat{\gamma} = 3.2$
- Local significance **5.3** σ
- 1% of scrambled data sets have a spot \geq 5.3 σ

- 1% of scrambled data sets have a spot \geq 5.3 σ

- A priori catalog of 110 preselected candidates.
- Based on 4th Fermi catalog of gamma-ray sources: 4FGL-2DR
- Selected a priori based on gammaray brightness and IceCube sensitivity at object's declination
- NGC1068 Best Fit Source
 - $-\hat{n}=79$
 - $-\hat{\gamma}=3.2$
 - Local significance **5.2** σ
- 1 in 100,000 scrambled data sets have object $\geq 5.2 \sigma$

Nan PKS 232 3C 40 TXS 224 RGB J22 CTA BL \mathbf{OX} B2 211 PKS 203 2 HWC J2Gamm MGRO J MG2 J201MG4 J2001ES 19! RXS J19 RX J1931 NVSS J19 MGRO J1 TXS 190 HESS J18 GRS 1 HESS J13 HESS J13 HESS J13 OT $84 \ 174$ 1H 1720 PKS 171 Mkn 4C + 3PG 155 GB6 J154 $B2\ 152$ PKS 150 PKS 150 PKS 14 PKS 142 NVSS J14 B3 134 S4 125PG 124 MG1 J123M 8 ON 2 3C24C + 2W Co PG 1213 PKS 12 B2 121 Ton !

		Source 1	ase resu	100											
ne	Class	α deg	δ [deg]	\hat{n}_s	Ŷ	$-\log_{10}(p_{tocal})$	\$90%	Ī	PKS B1130+008	BLL	173.20	0.58	15.8	4.0	0
20-035	FSRQ	350.88	-3.29	4.8	3.6	0.45	3.3		Mkn 421	BLL	166.12	38.21	2.1	1.9	0
4.3	FSRQ	343.50	16.15	5.4	2.2	0.62	5.1		4C +01.28	BLL	164.61	1.56	0.0	2.9	0
1+406	FSRQ	341.06	40.96	3.8	3.8	0.42	5.6		1H 1013+498	BLL	153.77	49,43	11.0	2.6	
43 + 203	BLL	340.99	20.36	0.0	3.0	0.33	3.1		4C +55.17 M 89	SBC	149.42	55,38 60,67	0.0	3.3	
102	FSRQ	338.15	11.73	0.0	2.7	0.30	2.8		PMN 10048±0022	AGN	140.00 147.94	0.37	9.3	4.0	- č
ac	BLL	330.69	42.28	0.0	2.7	0.31	4.9		OJ 287	BLL	133.71	20.12	0.0	2.6	õ
169	FSRQ	325.89	17.73	2.0	1.7	0.69	5.1		PKS 0829+046	BLL	127.97	4.49	0.0	2.9	ō
4+33	BLL	319.06	33.66	0.0	3.0	0.30	3.9		$S4 0814 \pm 42$	BLL	124.56	42.38	0.0	2.3	0
2+107	FSRQ	308.85	10.94	0.0	2.4	0.33	3.2		OJ 014	BLL	122.87	1.78	16.1	4.0	0
031 + 415	GAL	307.93	41.51	13.4	3.8	0.97	9.2		1ES 0806 + 524	BLL	122.46	52.31	0.0	2.8	0
Cygni	GAL	305.56	40.26	7.4	3.7	0.59	6.9		PKS 0736+01	FSRQ	114.82	1.62	0.0	2.8	0
019+37	GAL	304.85	36.80	0.0	3.1	0.33	4.0		PKS 0735+17	BLL	114.54	17.71	0.0	2.8	0
34 + 3710	FSRQ	303.92	37.19	4.4	-4.0	0.40	5.6		4C + 14.23	FSRQ	111.33	14.42	8.5	2.9	0
12 + 4352	BLL	300.30	43.89	6.1	2.3	0.67	7.8		S5 0716+71 DCD_D0256+14	BLL	110.49	71.34	0.0	2.5	0
9+650	BLL	300.01	65.15	12.6	3.3	0.77	12.3		PSR B0656+14 1E2 0647+950	GAL	104.95	14.24	8.4	4.0	
1246.3 ± 1	BLL	295.70	10.56	0.0	2.7	0.33	2.6		155 0041+200	BLL	102.70	25.00	1.8	2.9	
.1+0937	BLL	292.78	9.63	0.0	2.9	0.29	2.8		Crab nebula	GAL	23,22	22.01	1.0	2.7	- N
0836-012	UNIDB	287.20	-1.53	0.0	2.9	0.22	2.3		OG +050	FSRO	83.18	7.55	0.0	3.2	ŏ
908+06	GAL	287.17	6.18	4.2	2.0	1.42	5.7		TXS 0518+211	BLL	80.44	21.21	15.7	3.8	õ
2+556	BLL	285.80	55.68	11.7	4.0	0.85	9.9		TXS 0506+056	BLL	77.35	5.70	12.3	2.1	3
57+026	GAL	284.30	2.67	7.4	3.1	0.53	3.5		PKS 0502+049	FSRQ	76.34	5.00	11.2	3.0	0
285.0	UNIDB	283.15	0.69	1.7	3.8	0.27	2.3		S3 0458-02	FSRQ	75.30	-1.97	5.5	4.0	0
852-000	GAL	283.00	0.00	3.3	3.7	0.38	2.6		PKS 0440-00	FSRQ	70.66	-0.29	7.6	3.9	0
849-000	GAL	282.26	-0.02	0.0	3.0	0.28	2.2		MG2 J043337+2905	BLL	68.41	29.10	0.0	2.7	0
843-033	GAL	280.75	-3.30	0.0	2.8	0.31	2.5		PKS 0422+00	BLL	66.19	0.60	0.0	2.9	0
081	BLL	267.87	9.65	12.2	3.2	0.73	4.8		PKS 0420-01	FSRQ	65.83	-1.33	9.3	4.0	0
9+70	BLL	267.15	70.10	0.0	2.5	0.37	8.0		NCC 1925	1020	30.02	41.51	3.2	2.1	
+117	BLL	261.27	11.88	0.0	2.7	0.30	3.2		NGC 1068	SBC	49.90	-0.01	50.4	3.1	
7+177	BLL	259.81	17.75	19.8	3.6	1.32	7.3		PKS 0235+164	BLL	39.67	16.62	0.0	3.0	
501	BLL	253.47	39.76	10.3	4.0	0.61	7.3								
8.41	FSRQ	248.82	38.14	4.2	2.3	0.66	7.0		3C 66A	BLL	35.67	43.04	0.0	2.8	0
3+113	BLL	238.93	11.19	0.0	2.8	0.32	3.2		B2 0218+357	FSRQ	35.28	35.94	0.0	3.1	0
2+6129	BLL	235.75	61.50	29.7	3.0	2.74	22.0		PKS 0215+015	FSRQ	34.46	1.74	0.0	3.2	0
0+31	FSRQ	230.55	31.74	7.1	2.4	0.83	7.3		MG1 J021114+1051	BLL	32.81	10.86	1.6	1.7	0
2+036	AGN	226.26	3.44	0.0	2.7	0.28	2.9		TXS 0141+268	BLL	26.15	27.09	0.0	2.5	0
2+106	FSRQ	226.10	10.50	0.0	3.0	0.33	2.6		B3 0133+388	BLL	24.14	39.10	0.0	2.6	0
41+25	FSRQ	220.99	25.03	7.5	2.4	0.94	7.3		NGC 598 C2 0100 : 02	SBG	23.52	30.62	11.4	4.0	
4+240	BLL	216.76	23.80	41.5	3.9	2.80	12.3		52 0109+22 AC +01 02	BLL	17.16	1.50	2.0	3.1	
1826 - 023	BLL	214.61	-2.56	0.0	3.0	0.25	2.0		M 31	SBG	10.82	41.24	11.0	4.0	ĩ
+451	FSRQ	206.40	44.88	0.0	2.8	0.32	5.0		PKS 0019+058	BLL	5.64	6.14	0.0	2.9	ō
0+53	BLL	193.31	53.02	2.2	2.5	0.39	5.9	ł	DV9 9999 149	PIL	990.14	14.56	5.9	9.9	1
6+586	BLL	192.08	58.34	0.0	2.8	0.35	6.4		HESS 11841-055	GAL	280.23	-5.55	3.6	4.0	ő
31 + 0443	FSRQ	189.89	4.73	0.0	2.6	0.28	2.4		HESS J1837-069	GAL	279.43	-6.93	0.0	2.8	ŏ
57	AGN	187.71	12.39	0.0	2.8	0.29	3.1		PKS 1510-089	FSRO	228.21	-9.10	0.1	1.7	õ
246	BLL	187.56	25.30	0.9	1.7	0.37	4.2		PKS 1329-049	FSRQ	203.02	-5.16	6.1	2.7	õ
73	FSRQ	187.27	2.04	0.0	3.0	0.28	1.9		NGC 4945	SBG	196.36	-49.47	0.3	2.6	0
1.35	FSRO	186.23	21.38	0.0	2.6	0.32	3.5		3C 279	FSRQ	194.04	-5.79	0.3	2.4	0
mae	BLL	185.38	28.24	0.0	3.0	0.32	3.7		PKS 0805-07	FSRQ	122.07	-7.86	0.0	2.7	0
8+304	BLL	185.34	30.17	11.1	3.9	0.70	6.7		PKS 0727-11	FSRQ	112.58	-11.69	1.9	3.5	0
16-010	BLL	184.64	-1.33	6.9	4.0	0.45	3.1		LMC	SBG	80,00	-68.75	0.0	-3.1	0
5+30	BLL	184.48	30.12	18.6	3.4	1.09	8.5		SMC	SBG	14.50	-72.75	0.0	2.4	0
599	FSRO	179.88	29.24	0.0	2.2	0.29	4.5		PKS 0048-09	BLL	12.68	-9.49	3.9	3.3	0
			the second se		And the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					11.00	0.6 0.0			
				010		0120	110	ļ	NGC 253	SBG	11.90	-25.29	3.0	4.0	

- A priori catalog of 110 preselected candidates.
- Based on 4th Fermi catalog of gamma-ray sources: 4FGL-2DR
- Selected a priori based on gammaray brightness and IceCube sensitivity at object's declination
- NGC1068 Best Fit Source
 - $-\hat{n}=79$
 - $-\hat{\gamma} = 3.2$
 - Local significance **5.2** σ
- 1 in 100,000 scrambled data sets have object $\geq 5.2 \sigma$

Nan PKS 232 3C 45 TXS 224 RGB J22 CTA BL | \mathbf{OX} B2 211 PKS 203 2 HWC J2Gamm MGRO J MG2 J201MG4 J2001ES 195 RXS J19 RX J1931 NVSS J19 MGRO J1 TXS 190 HESS J18 GRS 1 HESS J13 HESS J13 HESS J13 OT S4 174 1H 1720 PKS 171 Mkn 4C + 3PG 1553 GB6 J154 B2 152 PKS 1424+240 NVSS_I141826-02 B3 1343+451 $84 \ 1250 \pm 53$ PG 1246+580 MG1 J123931+044 M 87 ON 246 3C 2734C + 21.35W Comae PG 1218+304 PKS 1216-010 B2 1215+30 Ton 599

FSRQ

FSRQ

BLL

BLL

FSRQ

BLL

BLL

FSRQ

AGN

BLL

FSRQ

FSRQ

BLL

BLL

BLL

BLL

FSRQ

226.1

220.9

216.9

214.6

206.4

193.3

192.0

189.8

187.'

187.

187.2

186.2

185.3

185.3184.6

184.4

-179.8

		Dontroe 1	vise tresui	10										
ne	Class	α [deg]	δ [deg]	\hat{n}_s	Ŷ	$-\log_{10}(p_{tocal})$	\$90%	PKS B1130+008	BLL	173.20	0.58	15.8	4.0	0
20-035	FSRQ	350.88	-3.29	4.8	3.6	0.45	3.3	Mkn 421	BLL	166.12	38.21	2.1	1.9	0
4.3	FSRQ	343.50	16.15	5.4	2.2	0.62	5.1	4C +01.28	BLL	164.61	1.56	0.0	2.9	0
1+406	FSRQ	341.06	40.96	3.8	3.8	0.42	5.6	1H 1013+498	BLL	153.77	49.43	0.0	2.6	0
43 + 203	BLL	340.99	20.36	0.0	3.0	0.33	3.1	4C +55.17	FSRQ	149.42	55.38	11.9	3.3	1
102	FSRO	338.15	11.73	0.0	2.7	0.30	2.8	M 82	SBG	148.95	69.67	0.0	2.6	0
ac	BLL	330.69	42.28	0.0	2.7	0.31	4.9	PMN J0948+0022	AGN	147.24	0.37	9.3	4.0	0
69	FSRO	325.89	17.73	2.0	1.7	0.69	5.1	OJ 287	BLL	133.71	20.12	0.0	2.6	0
4+33	BLL	319.06	33.66	0.0	3.0	0.30	3.9	PKS 0829+046	BLL	127.97	4.49	0.0	2.9	0
2 ± 107	FSRO	308.85	10.94	0.0	2.4	0.33	3.2	54 0814+42	BLL	124.55	42.38	12.1	2.3	
21 ± 415	CAL	307.93	41.51	12.4	2.8	0.07	0.2	1122 0906 1 594	BLL	122.87	1.78	16.1	4.0	
Cumi	CAL	205.56	40.98	7.4	9.7	0.50	6.0	DKS 0736+01	ESEO	114.89	1.69	0.0	2.0	- ă
Cygiii 010.1.27	CAL	204.85	28.80	0.0	9.1	0.03	4.0	PKS 0735+17	BLL	114.62	17.71	0.0	2.0	ŏ
24 - 2710	DEDO	304.80	27.10	0.0	3.1	0.33	4.0	4C +14 23	FSRO	111.33	14.42	8.5	2.0	ŏ
34+3710	PSRQ	303.92	31.19	4.4	4.0	0.40	0.0	\$5,0716+71	BLL	110.49	71.34	0.0	2.5	ŏ
12+4302	BLL	300.30	43.89	6.1	2.3	0.67	1.8	PSR B0656+14	GAL	104.95	14.24	8.4	4.0	ŏ
9+650	BLL	300.01	65.15	12.6	3.3	0.77	12.3	102.00.00.000	DIT	102.70	25.06	0.0	2.9	0
246.3										93.22	41.37	1.8	1.7	0
1+09										83,63	22.01	1.1	2.2	0
08:36-1						:1:				83.18	7.55	0.0	3.2	0
908+		\mathbf{n}					n	CP 4 7	$\mathbf{\nabla}$	80.44	21.21	15.7	3.8	0
2+55					/		J			77.35	5.70	12.3	2.1	3
57+0										76.34	5.00	11.2	3.0	0
285.0	UNIDD	200.10	0.09	1.1	0.0	0.27	4.0	00-0100-02	rang	75.30	-1.97	5.5	4.0	0
\$52-000	GAL	283.00	0.00	3.3	3.7	0.38	2.6	PKS 0440-00	FSRQ	70.66	-0.29	7.6	3.9	0
849-000	GAL	282.26	-0.02	0.0	3.0	0.28	2.2	MG2 J043337+2905	BLL	68.41	29.10	0.0	2.7	0
843-033	GAL	280.75	-3.30	0.0	2.8	0.31	2.5	PKS 0422+00	BLL	66.19	0.60	0.0	2.9	0
081	BLL	267.87	9.65	12.2	3.2	0.73	4.8	PKS 0420-01	FSRQ	65.83	-1.33	9.3	4.0	0
9+70	BLL	267.15	70.10	0.0	2.5	0.37	8.0							
+117	BLL	261.27	11.88	0.0	2.7	0.30	3.2	NGC 1275	AGN	49.96	41.51	3.6	3.1	0
7+177	BLL	259.81	17.75	19.8	3.6	1.32	7.3	NGC 1068	SBG	40.67	-0.01	50.4	3.2	4
501	BLL	253.47	39.76	10.3	4.0	0.61	7.3	PKS 0239±164	BLL	39.67	10.62	0.0	3.0	
8.41	ESRO	248.82	38.14	4.2	2.3	0.66	7.0	2/2 66 A	DIT	95.67	49.04	0.0	2.9	ŏ
84118	BLL	238.03	11 10	0.0	2.8	0.32	3.9	B2 0218+257	FSPO	35.07	35.04	0.0	2.0	
2+6120	BLL	985.75	61.50	20.7	3.0	9.74	22.0	PKS 0215+015	FSRQ	34.46	1.7.4	0.0	3.2	
0131	ESEC	200.10	\$1.74	71	9.4	0.99	7.9	MG1 J021114±1051	BLL	32.81	10.86	1.6	1.7	0
91.080	ACM	230.33	2.44	0.0	0.7	0.03	2.0	TXS 0141+268	BLL	26.15	27.09	0.0	2.5	ŏ

RESEARCH

RESEARCH ARTICLE

NEUTRINO ASTROPHYSICS

Evidence for neutrino emission from the nearby active galaxy NGC 1068

IceCube Collaboration*+

diffuse neutrino

Measured neutrino flux exceeds TeV gamma-ray upper limits MAYORANA 2023

Science 378 (2022) 538-543

TXS 0506+056 and NGC 1068 contribute each ~1% of the total astrophysical

NGC 1068 Seyfert Galaxy with an obscured black hole

- Very active starburst spiral galaxy.
- It is close! (~14.4 Mpc)
- It hosts a Compton-thick AGN
- AGN powered by a SMBH with mass ~107 108 M_{\odot}
- Intrinsically the brightest Seyfert in the X-ray band

The Disk-Corona Model

- Electron and protons are accelerated in the high field regions associated with the black hole and the accretion disk
- They produce neutrinos in the optical thick corona - Gamma-rays are absorbed

Accretion disk

X-ray Corona

Black Hole

Image credit: NASA/JPL-Caltech

 SUMMARY
 IceCube has been investigating a diffuse flux of astrophysical >TeV neutrinos for almost a decade providing the first neutrino view of the Universe

• First sources of neutrinos are being unveiled and we start having a blueprint of the solution of the cosmic-ray problem...

 ... however cosmic rays physics is never that simple and we can expect more surprises.

IceCube-Gen2 on its way (within next decade)

Future is bright in neutrino!

