

Gioacchino RANUCCI

JUNO & INFN – Milano

Mayorana Workshop

Modica 13-July-2023

- − LS large volume: → for statistics
- − High Light yield and transparency → for energy resolution 1200 pe/MeV

Key factors for resolution

- Large PMT number
- Optimal scint. optical properties
 - Calibration

Steel Truss

Holding PMTS ~20000 x 20" ~25000 x 3"

Acrylic Sphere

filled with 20 kton of liquid scintillator

JUNO has been approved in February 2013

Approved funding from several countries:

- Armenia
- Belgium
- Brazil
- Chile

٠

- Czech Republic
- Finland 715
 - France collaborators
- Germany
- Pakistan
- People's Republic of China
- Russia
- Slovakia
- Taiwan
- Thailand
- USA

JUNO geometry and site

Civil construction finished: 12/2021

The JUNO detector

43.5 m (Acrylic Sphere: D=35.4 m)

Top Tracker (TT)

- Precise μ tracker
- 3 layers of plastic scintillator
- $\sim 60\%$ of area above WCD

Calibration House

Water Cherenkov Detector (WCD)

- 35 kton ultra-pure water
- 2.4k 20" PMTs
- High μ detection efficiency
- Protects CD from external radioactivity & neutrons from cosmic-rays

Central Detector (CD) $\bar{\mathbf{v}}$ target

- Acrylic sphere with 20 kton liquid scint.
- 17.6k 20" PMTs + 25.6k 3" PMTs
- 3% energy resolution @ 1 MeV

Detector installation start-up

After the deployment of the liner on the wall of the experimental pool (radon stopping) the installation of the detector started in January 2022

In the figure \rightarrow first supporting leg of the steel truss

Installation of the supporting legs

 Acrylic Sphere supported by 590 connecting bars

Assembly of the Steel Support Structure and of the Lift Platform for

Vessel installation

 Acrylic Sphere supported by 590 connecting bars

The JUNO detector – CD Support Structure and Lift Platform

- Assembly of SS truss finished last summer
- Installation of acrylic sphere started in July 2022

The JUNO detector – Acrylic Sphere

- 265 acrylic plates
- thickness: 124±4 mm
- radiopurity: U/Th/K < 1 ppt</p>
- Each plate:
 - polished
 - cleaned
 - PE protective film added
- PE film to be removed after installation

Progress of the overall central detector installation

In the past Fall Support structure completed Top part of the vessel under construction

Installation status

electronics being installed! Details of the ongoing parallel installation of the acrylic vessel, PMTs and electronics

PMT modules installation

Inner view of the mounted portion of the acrylic vessel

Inner view of the installed PMTs

Underwater box containing the PMT electronics

Details of PMT & Electronics Installation

Installation of PMT and the readout electronics with cables is in progress 4600 20" PMTs, 3600 3" PMTs, and 900 underwater electronics boxes in place

PMT cables deployment

PMT installation ongoing

Installed 20"&3" PMTs

14

Recent global view of the progressing detector construction

Top part almost completed

The JUNO detector – Liquid Scintillator

Four purification plants to achieve target radio-purity 10⁻¹⁷ g/g U/Th and 20 m attenuation length at 430 nm.

All LS plants ready to produce the first test batch of scintillator for OSIRIS

Eur. Phys. J. C 81 (2021) no.11, 973

Multiple approach for target optical and radioactive purity

Huge effort for radiopurity control

Radiopurity of materials

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt -> 1 ppt
Metal in node	0.087	+1.0	Copper -> SS
PMT glass	0.33	+2.47	Schott -> NNVT/Ham
Rock	0.98	-0.85	3.2 m -> 4 m
Radon in water	1.31	-1.25	200 mBq/m ³ -> 10 mBq/m ³
Other	0	+0.52	Add PMT readout, calibration sys
Total	8.5	-1.3	

The Kr value takes into account the release from acrylic and the analysis approach to cope with it for solar ⁷Be

LS for solar neutrinos:

 $\begin{array}{l} \label{eq:VTh} $$U/Th < 10^{-17} g/g, $^{40}K < 10^{-18} g/g, $^{85}Kr < 50 \ \mu Bq/m^3, $^{226}Ra < 5 \times 10^{-24} g/g (0.1 \ \mu Bq/m^3), $^{210}Pb < 10^{-24} g/g ($^{222}Rn < 5 \ m Bq/m^3)$ \\ \end{array}$

Crucial the initial purification recirculation much more difficult than Borexino, KamLAND, SNO+,...

Radiopurity control of raw material:

- ✓ Careful material screening
- ✓ Meticulous Monte Carlo Simulation
- ✓ Accurate detector production handling

Better than spec. by 15%

Good enough for MH from reactor $\nu ^{\prime }s$

10⁻¹⁵ g/g for U and Th already demonstrated by the Daya Bay test

Radiopurity control for LS:

- Leak check(single component < 10⁻⁶ mbar·L/s) of all joints to reduce 222Rn and 85Kr
- Cleaning of all pipes, vessels to remove dust (check water cleanness)
- > Clean room environment during installation
- Surface treatment of the acrylic vessel (Rn daughters)
- LS filling strategy

JUNO physics

<u>"Neutrino Physics with JUNO," J. Phys. G 43 (2016) no.3, 030401</u> <u>"JUNO Physics and Detector," Prog. Part. Nucl. Phys. 123 (2022), 103927</u>

- Neutrino Mass Ordering (NMO)
- Precision measurement of oscillation parameters
- Atmospheric neutrinos
- Geoneutrinos

- Supernova (SN) neutrinos
- Diffuse SN neutrino background
- Solar neutrinos
- Nucleon decay & Exotic searches

Research	Expected signal	Energy region	Major backgrounds
Reactor antineutrino	60 IBDs/day	0–12 MeV	Radioactivity, cosmic muon
Supernova burst	5000 IBDs at 10 kpc	0–80 MeV	Negligible
-	2300 elastic scattering		
DSNB (w/o PSD)	2–4 IBDs/year	10–40 MeV	Atmospheric v
Solar neutrino	hundreds per year for ⁸ B	0–16 MeV	Radioactivity
Atmospheric neutrino	hundreds per year	0.1–100 GeV	Negligible
Geoneutrino	~ 400 per year	0–3 MeV	Reactor <i>v</i>

Measuring reactor \bar{v}_e inverse Beta Decay (IBD)

- Detected via IBD: $\overline{v}_e + p \rightarrow n + e^+$
 - IBD used since discovery of neutrino
 - ► Prompt+delayed signal ⇒ large background suppression

 $E_{vis}(e^+) \simeq E(\bar{v}_e) - 0.8 \text{ MeV} \leftarrow \text{used as proxy for antineutrino energy}$

Neutrino oscillations with Reactor Antineutrinos

• Only sensitive to $\overline{v}_e \rightarrow \overline{v}_e$

Distance: selects "oscillation regime"

- JUNO at maximum \bar{v}_e disappearance
- First experiment to see both Δm²

Expected reactor \overline{v}_e spectrum in JUNO

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001

▶ Mass ordering determination via the phase of the superimposed ripple \rightarrow detectable with resolution better than $3\% \rightarrow$ Huge calibration effort

JUNO-TAO

<u>"TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with</u> <u>Sub-percent Energy Resolution," arXiv:2005.08745</u>

- JUNO-TAO provides reference for reactor spectrum
- Better energy resolution than JUNO (4500 PE/MeV)
- JUNO-TAO detector:
 - 1 ton fiducial volume Gd-LS detector
 - 30 m from one of Taishan's 4.6 GW_{th} reactor core
 - ► 30× JUNO event rate
 - 10 m² SiPM of 50% photon detection efficiency (PDE) operated at -50°C
 - >95% photo-coverage

JUNO-TAO - Physics potential

<u>"TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with</u> <u>Sub-percent Energy Resolution," arXiv:2005.08745</u>

Neutrino Mass Ordering

See poster 10.5281/zenodo.6775075 from Neutrino 2022

Reactor only: 3σ in ~6 years × 26.6 GW_{th} exposure \rightarrow 2 reactors at Taishan and 6 at Yangjiang

Working into possibility to combine with JUNO Atmospheric result

Precision Measurement of Neutrino Oscillation Parameters

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022) no.12, 123001

Solar Neutrinos

- Nuclear fusion in Sun $\Rightarrow v_e$
 - v energy depends on specific reaction
 - Probe Sun composition
- JUNO expected to be able to measure ⁸B, ⁷Be, pep, CNO
 - Main limitation from radioactive backgrounds

Solar Neutrinos: ⁸B @ JUNO

"Feasibility and physics potential of detecting ⁸B solar neutrinos at JUNO," Chin. Phys. C **45** (2021) no.2, 023004 and "Model Independent Approach of the JUNO ⁸B Solar Neutrino Program," arXiv:2210.08437

*BX: Borexino

Solar Neutrinos: ⁷Be, pep, CNO @ JUNO

Diffuse Supernova Neutrino Background

"Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO," JCAP 10 (2022), 033

- Below 12 MeV reactors above 30 MeV atmospheric neutrinos
- Attainable 90% CL limit in JUNO in case of no detection in 10 years
- For comparison signal models with different average v energy, fraction of failed supernovae f_{BH} and present supernova rate R_{CCSN}

- DSNB discovery sensitivity for different models
- @10 years $\rightarrow 5\sigma$ sensitivity for reference model (solid line)
- Crucial background rejection Muon veto suppression Pulse shape discrimination for event of different types

Core Collapse Supernova Neutrinos

See poster 10.5281/zenodo.6785184 from Neutrino 2022

Multichannel detection of CCSN

False alert rate is smaller than 1/month.

SN detection efficiency

0.4

0:

Pre-SN alert signal Betelgeuse at 197 parsec

Capability to detect pre-SN neutrinos from close SN-candidates >50% efficiency to detect CCSN up to 250–300 kpc

- For reference: Milky Way diameter \sim 30 kpc; Andromeda galaxy distance
- $\sim 780 \, \text{kpc}$

Other topics in JUNO Geo \bar{v}

90% CL limit to proton lifetime 1.1×10³⁴ years after 10 years of data taking

Other nucleon decay modes explored

Among other topics discussed in J. Phys. G **43** (2016) no.3, 030401 and Prog. Part. Nucl. Phys. **123** (2022), 103927

Conclusions

JUNO will have unique properties: large target scint. mass & good energy resolution

- Very large photo-coverage & high LS light yield and transparency
- JUNO-TAO for reference reactor spectrum
- Multipronged strategy towards 3% energy resolution including calibration
- Huge effort for challenging radiopurity targets

Precision oscillation measurements with reactor $\bar{\mathrm{v}}_{\text{e}}$ flux

- First simultaneous observation of solar and atmospheric oscillations in same experiment
- Measurement of NMO not relying on matter effects \Rightarrow 3 σ in \sim 6 years (reactor only)
- < 0.5% precision on $\sin^2 \theta_{12}$, Δm_{21}^2 , and Δm_{32}^2

Vast astroparticle program beyond reactor \overline{v}_e analysis

- DSNB discovery possible within JUNO
- CCSN field of view extended to ~300 kpc
- Improved precision in Solar v studies, particularly for some radiopurity scenarios

▶ ...

Detector construction progressing rapidly \Rightarrow detector fill and first data within 2024