

Calculation of the nuclear matrix elements and phase-space factors for the double-beta decay of $^{104}\mathrm{Ru}$

MAYORANA Workshop

12.7.2023

Elina Kauppinen

Supervisor: Jenni Kotila

Outline of the speech

- Motivation and introduction
- Theory
- Experimental measurements
- Results
- Conclusions

- Neutrinoless double-beta decay remains one of the most talked topics in nuclear and particle physics.
- Observing this kind of decay would mean physics beyond the standard model.
 - -> Neutrino is a Majorana particle.

Motivation and introduction

- We have studied the double-beta decay of 104 Ru -> 104 Pd
 - From ground state to ground state

- Both two-neutrino and neutrinoless decay
- The used nuclear model is the microscopic interacting boson model (IBM-2)
- In the phase-space factor calculations, we use newly measured *Q*-value for double-beta decay of ¹⁰⁴Ru
- This kind of study was previously made, for example [Eur. Phys. J. A (2022) 58:44]

Motivation and introduction

- Studies made before with IBM-2:
 - Ruthenium

- $\beta^{-}\beta^{-}$: ¹⁰⁰Mo \rightarrow ¹⁰⁰Ru, $2\nu\beta\beta$ ja $0\nu\beta\beta$ (light and heavy neutrino) [PRC 91 (2015) 034304], Majoron emitting [PRC 103 (2021) 044302]
- $\beta^+\beta^+$: ⁹⁶Ru -> ⁹⁶Mo (light and heavy) [PRC 91 (2015) 034304]
- Palladium
 - β⁻β⁻: ¹¹⁰Pd -> ¹¹⁰Cd, 2νββ + 0νββ (light and heavy) [PRC 91 (2015) 034304], Majoron emitting [PRC 103 (2021) 044302]
 - $\beta^+\beta^+$: ¹⁰⁶Cd -> ¹⁰⁶Pd, $2\nu\beta\beta + 0\nu\beta\beta$ (light and heavy) [PRC 91 (2015) 034304]

- Microscopic interacting boson model (IBM-2)
 - Protons and neutrons pair up and are considered bosons with a total angular momentum of 0 or 2
 - The number of bosons depends on the active nucleon or hole pairs outside the active shell
 - For 104 Ru: N_P = 3 and N_N = 5
 - For $^{104}\mathrm{Pd}$: N_{P} = 2 and N_{N} = 4
 - Bosons create the excitation states

- This study is done in collaboration with an experimental group from the University of Jyväskylä
- The measurements were done at IGISOL (Ion Guide Isotope Separator On-Line)
- They have used a mass spectrometer, which is a penning trap
- *Q*-value has been determined very precisely
 - The mass difference between $^{104}\mathrm{Ru}$ and $^{104}\mathrm{Pd}$ was measured
 - From the mass difference, the *Q*-value was calculated ($E = mc^2$)
- The measured Q -value for the double beta decay of 104 Ru is fully compatible with the previously measured value 1299(3)keV (AME2020) but is much more precise
 - Analyzation of the *Q* -value is still in progress

Nuclear matrix elements

• Two-neutrino double-beta decay matrix element consists of the Gamow-Teller (GT) and Fermi (F) parts

$$M^{2\nu} = M_{GT}^{2\nu} + \left(\frac{g_V}{g_A}\right)^2 M_F^{2\nu}$$

- We use the isospin restoration formalism, which leads to a very small Fermi matrix element for $2\nu\beta\beta$.
- Neutrinoless double-beta decay matrix element can be written as

$$M^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$$

- Where the Tensor (T) part is also included
- We use closure approximation in the calculation of both neutrinoless and two-neutrino nuclear matrix elements. The neutrinoless NME is not very sensitive to the choice of closure energy but the two-neutrino NME strongly depends on the closure energy. The calculation without closure approximation is a work in progress.

Nuclear matrix elements

 These were calculated with two different parameters for palladium. Parameters were taken from [Nucl. Phys. A 604, 163 (1996)] and [Nucl. Phys. A 348, 125 (1980)]

IBM-2 calculations of even-even Pd nuclei

Ka-Hae Kim^a, Adrian Gelberg^{a,b}, Takahiro Mizusaki^a, Takaharu Otsuka^a, Peter von Brentano^b ^a Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan ^b Institut für Kernphysik der Universität zu Köln, 50937 Cologne, Germany

Received 1 March 1996

THE Ru AND Pd ISOTOPES IN THE PROTON-NEUTRON INTERACTING BOSON MODEL

P. VAN ISACKER[†] and G. PUDDU Kernfysisch Versneller Instituut, University of Groningen, The Netherlands and Yale University, New Haven, Connecticut 06511

Received 19 May 1980

	104 Pd	104 Pd	¹⁰⁴ Ru
	(1996)	(1980)	(1980)
ED	-	0.938	0.766
EDN	0.920	-	-
EDP	0.860	-	-
RKAP	-0.18	-0.25	-0.167
CHN	-0.48	-1.0	-1.118
CHP	-0.3	0.2	0.4
RMAJ1	0.2	0.0	0.0
RMAJ2	0.05	0.0	0.0
RMAJ3	0.0	0.0	0.0
CON	-0.39	0.188	-0.188
C2N	-0.13	0.0	-1.125
C4N	0.0	0.0	0.0

Nuclear matrix elements

- Matrix elements calculated with two different parametrization
- Also, the NMEs are calculated with CD-Bonn and Argonne short-range correlations
- The two parametrizations give essentially the same NMEs

	M ^{2ν} (CD-Bonn)	M ^{2ν} (Argonne)	M ^{0ν} (CD-Bonn)	$M^{0 u}$ (Argonne)
(1996)	0.151	0.150	4.487	4.321
(1980)	0.151	0.149	4.482	4.316

Phase-space factors

- The key ingredients for the evaluation of phase-space factors in single- and double-β decay are the (scattering) electron wave functions.
- The calculation makes use of exact Dirac wave functions with finite nuclear size and electron screening.
- Phase-space factors were calculated using the measured Q -value for 104 Ru.
- These are also preliminary results because they rely on the Q-value
- The obtained results are
 - $2\nu\beta\beta$: $G_{2\nu} = 3.1 \times 10^{-21} \,\mathrm{yr}^{-1}$
 - $0\nu\beta\beta$: $G_{0\nu} = 1.1 \times 10^{-15} \,\mathrm{yr}^{-1}$

Estimates for the half-life

- The estimates for the half-life can be calculated using the nuclear matrix elements and phase space factors
- For the two-neutrino case, the inverse of the half-life can be calculated as
- $\left[t_{1/2}^{2\nu}\right]^{-1} = g_A^4 G_{2\nu} \left|M_{2\nu}\right|^2$

<u>ll</u>

- And for the neutrinoless double-beta decay the inverse of the half-life is
- $\left[t_{1/2}^{0\nu}\right]^{-1} = g_A^4 G_{0\nu} \left| M_{0\nu} \right|^2 \frac{m_{\beta\beta}^2}{m_e^2}$

Where the effective neutrino mass is $m_{\beta\beta} = \sum_{i} U_{ei}m_{i}$

Estimates for the half-life

 Preliminary results for the half-lives for two neutrino and neutrinoless doublebeta decay were calculated

<u>lli</u>

• The effective neutrino mass was estimated to be 0.01 keV - 0.1 keV

$g_A^{\it eff}$	$t_{1/2}^{2\nu\beta\beta}$ (years)	$t_{1/2}^{0 uetaeta}$ (years)
$1.269A^{-0.18}$	1.55×10^{23}	$(1.42 - 142.06) \times 10^{28}$
1.269	5.47×10^{21}	$(5.01 - 501.43) \times 10^{26}$
1	1.42×10^{22}	$(1.30 - 130.03) \times 10^{27}$

- We have calculated the nuclear matrix elements for the double-beta decay of ¹⁰⁴Ru —> ¹⁰⁴Pd using the microscopic interacting boson model
 - Matrix elements were almost the same with the two different parameterizations
- The preliminary results for phase-space factors were also calculated
- The estimated half-lives were obtained
- The longest directly measured half-life for 2v decay is $t_{1/2} = 1.8 \times 10^{22}$ years for ¹²⁴Xe (2 ν ECEC), which is of the same order as some of the estimated half-lives
- We are planning to do the same kind of measurement-calculations combination for other double-beta decay candidates in the future

Thank you!