Calculation of the nuclear matrix elements and phase-space factors for the double-beta decay of ${ }^{104} \mathrm{Ru}$

MAYORANA Workshop
12.7.2023

Elina Kauppinen
Supervisor: Jenni Kotila

 Outline of the speech

- Motivation and introduction
- Theory
- Experimental measurements
- Results
- Conclusions

Motivation and introduction

- Neutrinoless double-beta decay remains one of the most talked topics in nuclear and particle physics.
- Observing this kind of decay would mean physics beyond the standard model.
- $->$ Neutrino is a Majorana particle.

Motivation and introduction

- We have studied the double-beta decay of ${ }^{104} \mathrm{Ru} \rightarrow{ }^{104} \mathrm{Pd}$
- From ground state to ground state
- Both two-neutrino and neutrinoless decay
- The used nuclear model is the microscopic interacting boson model (IBM-2)
- In the phase-space factor calculations, we use newly measured Q-value for double-beta decay of ${ }^{104} \mathrm{Ru}$
- This kind of study was previously made, for example [Eur. Phys. J. A (2022) 58:44]

Eur. Phys. J. A (2022) 58:44 https://doi.org/10.1140/epja/s10050-022-00695-w	THE EUROPEAN PhYsical Journal A
Regular Article - Experimental Physics	
High-precision \boldsymbol{Q}-value measurement and nuclear matrix element calculations for the double- β decay of ${ }^{98} \mathbf{M o}$	
J. Suhonen ${ }^{1}$	
${ }^{1}$ Accelerator Laboratory, Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyvaskyla, Finland ${ }^{2}$ Department of Quantum Physics and Astrophysics and Institute of Cosmos Sciences, University of Barcelona, 08028 Barcelona, Spain ${ }^{3}$ Sloane Physics Laboratory, Center for Theoretical Physics, Yale University, New Haven, CT 06520-8120, USA	
Received: 9 November 2021 / Accepted: 22 February 2022 / Published online: 14 March 2022 © The Author(s) 2022 Communicated by Klaus Blaum	

 Motivation and introduction

- Studies made before with IBM-2:
- Ruthenium
- $\beta^{-} \beta^{-}$: ${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru}, 2 \nu \beta \beta$ ja $0 \nu \beta \beta$ (light and heavy neutrino) [PRC 91 (2015) 034304], Majoron emitting [PRC 103 (2021) 044302]
- $\beta^{+} \beta^{+}:{ }^{96} \mathrm{Ru} \rightarrow{ }^{96} \mathrm{Mo}$ (light and heavy) [PRC 91 (2015) 034304]
- Palladium
- $\beta^{-} \beta^{-}$: ${ }^{110} \mathrm{Pd} \rightarrow{ }^{110} \mathrm{Cd}, 2 \nu \beta \beta+0 \nu \beta \beta$ (light and heavy) [PRC 91 (2015) 034304], Majoron emitting [PRC 103 (2021) 044302]
- $\beta^{+} \beta^{+}:{ }^{106} \mathrm{Cd} \rightarrow{ }^{106} \mathrm{Pd}, 2 \nu \beta \beta+0 \nu \beta \beta$ (light and heavy) [PRC 91 (2015) 034304]

Theory

- Microscopic interacting boson model (IBM-2)
- Protons and neutrons pair up and are considered bosons with a total angular momentum of 0 or 2
- The number of bosons depends on the active nucleon or hole pairs outside the active shell
- For ${ }^{104} \mathrm{Ru}: N_{P}=3$ and $N_{N}=5$
- For ${ }^{104} \mathrm{Pd}: N_{P}=2$ and $N_{N}=4$
- Bosons create the excitation states

Measurements

- This study is done in collaboration with an experimental group from the University of Jyväskylä
- The measurements were done at IGISOL (Ion Guide Isotope Separator On-Line)
- They have used a mass spectrometer, which is a penning trap
- Q-value has been determined very precisely
- The mass difference between ${ }^{104} \mathrm{Ru}$ and ${ }^{104} \mathrm{Pd}$ was measured
- From the mass difference, the Q-value was calculated $\left(E=m c^{2}\right)$
- The measured Q-value for the double beta decay of ${ }^{104} R u$ is fully compatible with the previously measured value 1299(3)keV (AME2020) but is much more precise
- Analyzation of the Q-value is still in progress

Nuclear matrix elements

- Two-neutrino double-beta decay matrix element consists of the Gamow-Teller (GT) and Fermi (F) parts

$$
M^{2 \nu}=M_{G T}^{2 \nu}+\left(\frac{g_{V}}{g_{A}}\right)^{2} M_{F}^{2 \nu}
$$

- We use the isospin restoration formalism, which leads to a very small Fermi matrix element for $2 \nu \beta \beta$.
- Neutrinoless double-beta decay matrix element can be written as
. $M^{0 \nu}=M_{G T}^{0 \nu}-\left(\frac{g_{V}}{g_{A}}\right)^{2} M_{F}^{0 \nu}+M_{T}^{0 \nu}$
- Where the Tensor (T) part is also included
- We use closure approximation in the calculation of both neutrinoless and two-neutrino nuclear matrix elements. The neutrinoless NME is not very sensitive to the choice of closure energy but the two-neutrino NME strongly depends on the closure energy. The calculation without closure approximation is a work in progress.

$\frac{1}{4}$
 Nuclear matrix elements

- These were calculated with two different parameters for palladium. Parameters were taken from [Nucl. Phys. A 604, 163 (1996)] and [Nucl. Phys. A 348, 125 (1980)]

IBM-2 calculations of even-even Pd nuclei Ka-Hae Kim ${ }^{\text {a }}$, Adrian Gelberg ${ }^{\text {a,b }}$, Takahiro Mizusaki ${ }^{\text {a }}$,

Takaharu Otsuka ${ }^{\text {a }}$, Peter von Brentano ${ }^{\text {b }}$
a Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan
${ }^{\mathrm{b}}$ Institu fuir Kernphysik der Universitut zu Köln, 50937 Cologne, Germany Received 1 March 1996

HE Ru AND Pd ISOTOPES
IN THE PROTON-NEUTRON
INTERACTING BOSON MODEL
P. VAN ISACKER ' and G. PUDDU

Kernfysisch Versneller Instituut, University of Groningen, The Netherlands
Yale University, New Haven, Connecticut 0651
Received 19 May 1980

| | ${ }^{104} \mathrm{Pd}$ | ${ }^{104} \mathrm{Pd}$ | ${ }^{104} \mathrm{Ru}$ |
| :--- | :--- | :--- | :--- |$]$| | (1996) | (1980) | (1980) |
| :--- | :--- | :--- | :--- |
| ED | - | 0.938 | 0.766 |
| EDN | 0.920 | - | - |
| EDP | 0.860 | - | - |
| RKAP | -0.18 | -0.25 | -0.167 |
| CHN | -0.48 | -1.0 | -1.118 |
| CHP | -0.3 | 0.2 | 0.4 |
| RMAJ1 | 0.2 | 0.0 | 0.0 |
| RMAJ2 | 0.05 | 0.0 | 0.0 |
| | | | |
| RMAJ3 | 0.0 | 0.0 | 0.0 |
| C0N | -0.39 | 0.188 | -0.188 |
| C2N | -0.13 | 0.0 | -1.125 |
| C4N | 0.0 | 0.0 | 0.0 |

Nuclear matrix elements

- Matrix elements calculated with two different parametrization
- Also, the NMEs are calculated with CD-Bonn and Argonne short-range correlations
- The two parametrizations give essentially the same NMEs

	$M^{2 \nu}$ (CD-Bonn)	$M^{2 \nu}$ (Argonne)	$M^{0 \nu}$ (CD-Bonn)	$M^{0 \nu}$ (Argonne)
(1996)	0.151	0.150	4.487	4.321
(1980)	0.151	0.149	4.482	4.316

 Phase-space factors

- The key ingredients for the evaluation of phase-space factors in single- and double- β decay are the (scattering) electron wave functions.
- The calculation makes use of exact Dirac wave functions with finite nuclear size and electron screening.
- Phase-space factors were calculated using the measured Q-value for ${ }^{104} \mathrm{Ru}$.
- These are also preliminary results because they rely on the Q-value
- The obtained results are
- $2 \nu \beta \beta: G_{2 \nu}=3.1 \times 10^{-21} \mathrm{yr}^{-1}$
- $0 \nu \beta \beta: G_{0 \nu}=1.1 \times 10^{-15} \mathrm{yr}^{-1}$

Estimates for the half-life

- The estimates for the half-life can be calculated using the nuclear matrix elements and phase space factors
- For the two-neutrino case, the inverse of the half-life can be calculated as
- $\left[t_{1 / 2}^{2 \nu}\right]^{-1}=g_{A}^{4} G_{2 \nu}\left|M_{2 \nu}\right|^{2}$
- And for the neutrinoless double-beta decay the inverse of the half-life is
. $\left[t_{1 / 2}^{0 \nu}\right]^{-1}=g_{A}^{4} G_{0 \nu}\left|M_{0 \nu}\right|^{2} \frac{m_{\beta \beta}^{2}}{m_{e}^{2}}$
Where the effective neutrino mass is $m_{\beta \beta}=\sum_{i} U_{e i} m_{i}$

Estimates for the half-life

- Preliminary results for the half-lives for two neutrino and neutrinoless doublebeta decay were calculated
- The effective neutrino mass was estimated to be $0.01 \mathrm{keV}-0.1 \mathrm{keV}$

$g_{A}^{\text {eff }}$	$t_{1 / 2}^{2 \nu \beta \beta}$ (years)	$t_{1 / 2}^{0 \nu \beta \beta}$ (years)
$1.269 A^{-0.18}$	1.55×10^{23}	$(1.42-142.06) \times 10^{28}$
1.269	5.47×10^{21}	$(5.01-501.43) \times 10^{26}$
1	1.42×10^{22}	$(1.30-130.03) \times 10^{27}$

Conclusions

- We have calculated the nuclear matrix elements for the double-beta decay of ${ }^{104} \mathrm{Ru} \rightarrow{ }^{104} \mathrm{Pd}$ using the microscopic interacting boson model
- Matrix elements were almost the same with the two different parameterizations
- The preliminary results for phase-space factors were also calculated
- The estimated half-lives were obtained
- The longest directly measured half-life for $2 v$ decay is $t_{1 / 2}=1.8 \times 10^{22}$ years for ${ }^{124} \mathrm{Xe}(2 \nu \mathrm{ECEC})$, which is of the same order as some of the estimated half-lives
- We are planning to do the same kind of measurement-calculations combination for other double-beta decay candidates in the future

Thank you!

