

CHARACTERIZATION OF LOW-ENERGY RECOILS WITH THE RED EXPERIMENT

Noemi Pino, On the behalf of the **ReD working group University of Catania - INFN Sez. CT**

DIRECT DETECTION OF DARK MATTER

► WHO?

► Weakly Interacting Massive Particles (WIMPs)

► WHAT?

► WIMP-induced Nuclear Recoils (NRs)

► WHERE?

Dual-phase Time Projection Chambers (TPC) filled with liquefied noble elements (Ar or Xe) (but other detector technologies are also used)

► HOW?

► Signals from scintillation and ionization

► WHY?

 Solve the puzzle of this unknown constituent of the Universe

THE GLOBAL ARGON DARK MATTER COLLABORATION EFFORT

Liquid Argon multi-tonnes experiments

Push sensitivity down to neutrino fog

Global Argon Dark Matter Collaboration, European Strategy on Particle Physics Dec 2018

N.Pino - MAYORANA WORKSHOP - 12th July 2023

2013 - 2019

2026 - 2035

2030s - ...

WHY DO WE LOOK FOR LOW-ENERGY RECOILS IN LAR TPC?

Phys. Rev. D 107, 063001 (2023)

REcoil **D**irectionality experiment aims to characterize the response of a dual-phase LAr TPC for NRs down to the **unexplored range of 2-5** keV_{nr} to study the charge yield vs the energy of the recoil (E_{NR})

- In 2018 DarkSide-50 extended its physics case to lighter Dark Matter
- ▶ <u>Challenging</u> → ionization is the only detection channel available since the *efficiency for detecting scintillation signal is low*
- ➤ No signal for WIMPs → current 90% CL exclusion limit set for spin independent WIMPs with mass in [1.2, 3.6] GeV/c²
 - Dedicated calibration with neutron sources mandatory to improve and better constrain response model at the keV scale

RECOIL DIRECTIONALITY (RED) EXPERIMENT

- R&D project within the *Global Argon Dark Matter* Collaboration
- Double-phase, Liquid Argon Time Projection Chamber
- Three scientific objectives in view of the future DarkSide-20k
 - 1. Test the optical readout system consisting in cryogenic Silicon Photomultipliers (SiPMs) [P. Agnes et al., Eur. Phys. J. C (2021) 81,1014]
 - 2. Investigate the directional sensitivity via the recombination effect [paper in preparation]

3. Characterization of low-energy Nuclear Recoil signals

HOW TO GET AWAY WITH DATA

STRATEGY

- Neutrons of O(2 MeV) produced by the ²⁵²Cf source
- Looking for ionization events offline (TPC acquired in *slave mode*)
 - Time of Flight (ToF) measurements to retrieve the kinetic energy of the initial neutron
 - ► Tagger detectors
 - ► BaF₂ crystals facing the source and detecting γs form SF \rightarrow **START**
 - ➤ Plastic Scintillators (PScis) in a neutron spectrometer → STOP
 - ► Two body kinematics to calculate E_{NR}

 $E_{NR} = 2E_{Kin} \frac{m_n m_{Ar}}{(m_n + m_{Ar})^2} (1 - \cos \theta_{scatt})$

EXPERIMENTAL SETUP

N.Pino - MAYORANA WORKSHOP - 12th July 2023

(3) **TPC** \rightarrow In SLAVE mode, offline analysis

THE SOURCE INSIDE ITS SHIELD

- \succ ²⁵²Cf source
 - ► 0.86 MBq (1/1/2023)
 - ► 26 kBq SF
- ➤ Shield made of B-loaded PE (15 cm), Fe and Pb
- ➤ Collimator "nose": 50 cm of B-loaded PE, opening angle $\sim 2^{\circ}$
- Designed to irradiate the entire TPC at 1 m distance

THE TAGGER DETECTORS

BaF₂ scintillators

- Coupled with Hamamatsu PMT
- ► Fast scintillation (0.8 ns but @220 nm)
- Featuring e-/ion discrimination
- Detect the accompanying radiation of the SF

N.Pino - MAYORANA WORKSHOP - 12th July 2023

Neutron spectrometer

- ► 18 1-in EJ-276 Plastic Scintillators + PMTs
- > 2 matrices 3x3 placed at $\theta_{scatt} \sim 12^{\circ}-17^{\circ}$ wrt the TPC position in the cryostat
- ► Fast timing (1 ns rms)
- Featuring n/γ discrimination

THE HEART OF THE EXPERIMENT

N.Pino - MAYORANA WORKSHOP - 12th July 2023

- > Active volume of $5(l) \ge 5(w) \ge 6(h)$ cm³
- Liquid Argon bulk + 7-mm-thick gas layer
- Conductive layer of ITO on Anode and Cathode windows
- Cryogenic SiPM readout: two 5x5 cm² tiles with 24 devices
 - 1. Top : 24 channels
 - 2. Bottom: 4 channels

Scan for the paper

SIGNALS IN A DUAL-PHASE LAR TPC

N.Pino - MAYORANA WORKSHOP - 12th July 2023

- \blacktriangleright NR event \rightarrow Energy deposit
 - Prompt scintillation light (S1)
 - Creation of electron-ion pairs due to *ionization*
 - ▶ e⁻ drifting toward the top of TPC thanks to E_{drift} and extracted in the gas layer
 - \rightarrow delayed **electroluminescence** signal (S2)
- \succ Time difference S2 -S1
 - \rightarrow drift time and *z* coordinate of the event
- ► **Spatial reconstruction** on *x*-*y* plane thanks to S2 pattern
- ► **S1** Pulse Shape Discrimination (PSD) of the Nuclear Recoil events wrt Electron Recoils (ERs)

- ► ²⁵²Cf data campaign
 - Signal rate of 1.7 cph
 - ► Taking data for 2 months, from January to March 2023
- ► Calibration with ^{83m}Kr

ER CALIBRATION WITH 83MKR

- Calibration point at low energy with a source uniformly distributed inside the TPC
 - \rightarrow study of the *XYZ* response
 - \rightarrow corrections for inhomogeneities
 - ► 83m Kr electron source ($T_{1/2} = 1.83$ h):
 - \blacktriangleright two emission lines at 32.15 keV and at 9.41 keV \rightarrow emission of electrons totaling about 41.56 keV energy
 - ➤ made by evaporating the progenitor ⁸³Rb, which decays with a half-life 86.2 d, on carbon coal grains

14

CONCLUSIONS

- ► In its third and last physics campaign the ReD experiment aims to characterize the response of a LAr TPC for NR events at low energy
 - Experimental data to validate the ionization model in Liquid Argon for low-energy recoils
 - ► The focus is collecting S2 pulse from NRs and derive the charge yield down to the region of 2-5 keV_{NR}
 - Data taking campaign concluded, analysis ongoing
- Future perspectives: further improve the low-energy calibration down to the sub-keV (ReD+ and DD Neutron Gun)

5

Thanks for your attention!

BACKUP

THE ROLE PLAYED BY ARGON

- ► High transparency to photons and electrons
- Scalability due to Liquid Ar's low cost
- Efficient background rejection :
 - Pulse Shape Discrimination (PSD) for β/γ rejection -
 - Low-radioactivity due to the underground extraction -
- Efficient drift and extraction of the ionization electrons
- ► Light nucleus allows light dark matter to produce higher-energy recoils

 \rightarrow all these properties enable dual-phase LAr TPC to search for dark matter into the solar neutrino fog 18

SIGNALS IN AR

N.Pino - MAYORANA WORKSHOP - 12th July 2023

NEUTRON (D-D) GUN PROJECT

- > Further improve the characterization for **low-energy recoils**
- Essential for low-mass analysis
- ► Idea: use a D-D neutron gun instead of the ²⁵²Cf source
- \blacktriangleright Mono-energetic neutrons of 2.4 MeV, flux up to 10⁷ n/s (x30 wrt. source)
- ► Use Si detectors to tag the accompanying 3He
 - ► Gun funded through a FAPESP grant to USP
 - In collaboration with Naples, Catania and LNS •
 - Commissioning at IFUSP
 - Data taking at LNS (late 2024 and 2025)

N.Pino - MAYORANA WORKSHOP - 12th July 2023

• 2.4 kHz trigger rate at Si Det

Irradiate a miniaturized LAr TPC with mono-energetic neutrons to produce NRs with momenta at different angles wrt ε_d

- Neutrons via the p(7Li,7Be)n reaction at the TANDEM accelerator
- ► (n,n') with an Ar nucleus \rightarrow Nuclear Recoil
 - Two-body kinematics constrain
- ➤ n' detected by an array of Liquid Scintillator (LScis)
- Every LSci detector determine the *energy* and *direction* of the recoiling Ar
- ► NRs with the same E_{recoil} but different azimuthal angle ϕ (z-axis)

A NOVEL MODEL FOR DIRECTIONALITY

Model	Directional dependence	
Thomas-Imel, Box ("short track") Phys. Rev. A 36 (1987) 614	None	
Jaffé-Birks ("infinitely long track") Ann Phys 347 (1913) 303	$[\sin \phi]^{-1}$	
Cataudella et al. JINST 12 (2017) P12002	$\left[\sqrt{\sin^2\phi + \cos^2\phi/R^2}\right]^{-1}$	

N.Pino - MAYORANA WORKSHOP - 12th July 2023

The breakthrough of the elongated ellipsoid ZZ

- Innovative model by Cataudella et al.
- ► Relevant parameter *R*, the *nonsphericity* of the initial electron cloud
 - If $\mathbf{R} > 1 \rightarrow$ net directional effect
 - If $\mathbf{R} = \mathbf{1} \rightarrow$ no directional dependence (spherical symmetry, Thomas-Imel)
- ► *Contours*: detector response from mono-energy NRs (simulated data)
- \blacktriangleright Impact on detector response \rightarrow change S1-S2 balance

A directional effect would cause the shifting of the centroid of the contours

SIGNALS AND BACKGROUNDS

- ► The TPC was irradiated for 14 days in February 2020
- ► The golden-plated events are the *three-fold coincidences*: (1) Si-Tel \rightarrow (2) TPC \rightarrow Spectrometer
- ► Further **cuts** and **cleaning**: ⁷Be tagging, timing, PSD

 $\rightarrow \sim 7000$ events with proper energy (70 keV_{nr}) and timing, about 150 events/day

(3) Neutron

Residual Backgrounds:

- ► Accidentals
- ► (n, n') events in the TPC
- Neutrons from p(7Li,7Be*)n
 - \succ 63.5 keV recoils in the TPC
- Neutrons with multi-scattering

ANALYSIS AND RESULTS

- ► Three-fold coincidence events + Nuclear **Recoil** (SiTel \land TPC) sample
- Components: signal, multi scattering, accidental coincidences
- ► PDF from Geant4 simulations and/or datadriven
- > NR quenching in Ar \rightarrow Lindhard + Mei models [Phys Rev D. 91.092007]
- ► Fitting region limited to 100-350 PE \rightarrow ~ 30 -100 keVnr

$R = 1.036 \pm 0.024 \Rightarrow No effect$

