

An updated computational tool for solving the radial wave equations

Nele Volmer *Max-Planck-Institut für Kernphysik* collaborators: Lukáš Gráf, Oliver Scholer

- The radial wave equations
- Currently available software
- What we do
- Some computational details
- Conclusion

The radial wave equations

Schrödinger case

electron (or positron) stationary states in non-relativistic quantum mechanics spherical harmonics

 $\Psi_{Elm}(\mathbf{r}) = \frac{1}{r} P_{El}(r) Y_{lm}(\hat{\mathbf{r}})$ distance from center

solve radial Schrödinger equation for P:

$$-\frac{\hbar^2}{2m_e}\frac{d^2P_{El}}{dr^2} + \left[\frac{\hbar^2}{2m_e}\frac{l(l+1)}{r^2} + V(r)\right]P_{El} = EP_{El}$$
central potential

Dirac case

stationary states of relativistic elementary particles with spin ½

$$\Psi_{W_{\kappa}m}(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} P_{W\kappa}(r)\Omega_{\kappa,m}(\hat{\mathbf{r}}) \\ iQ_{W\kappa}(r)\Omega_{-\kappa,m}(\hat{\mathbf{r}}) \end{pmatrix}$$

(I-j)(2j+1) spherical spinors **solve radial Dirac equations for P & Q:**

$$\frac{dP_{W\kappa}}{dr} = -\frac{\kappa}{r} P_{W\kappa} + \frac{W + m_e c^2 - V(r)}{c\hbar} Q_{W\kappa}$$

$$\frac{dQ_{W\kappa}}{dr} = \frac{-W + m_e c^2 + V(r)}{c\hbar} Q_{W\kappa} + \frac{\kappa}{r} Q_{W\kappa}$$

8.7.2023 MAYORANA School

The radial wave equations – what for?

Needed for atomic and nuclear physics e.g. beta decay (phase space)

8.7.2023 MAYORANA School

Nele Volmer

Currently available software

	ссссссссссссссс			
	RRRRR AA R R A A RRRRR AAAAAA R R A A R R A A R R A A	DDDDD IIII D D II A D D II A D D II A D D II A D D II A DDDDB IIII	AA L A A L AAAAAA L A A L A A L A A LLLLLL (version	C C C C C C C C 2018). C
C Numerical solution of the Schrodinger (S) and Dirac (D) radial C C wave equations. Cubic spline interpolation + power series method. C C C C				
C References: [1] F. Salvat and R. Mayol, 'Accurate numerical solution of Schrodinger and Dirac wave equations for central fields'. Comput. Phys. Commun. 62 (1991) 65-79. [2] F. Salvat, J. M. Fernandez-Varea and W. Williamson, Jr., 'Accurate numerical solution of the radial Schrodinger and Dirac wave equations'. Comput. Phys. Commun. 90 (1995) 151-158. [3] F. Salvat and J.M. Fernandez-Varea, 'RADIAL: a FORTRAN subroutine package for the solution of the radial Schrodinger and Dirac wave equations'. Internal report, University of Barcelona, 2018. This document describes the RADIAL subroutine package and its operation. The PDF file is included in the distribution package.				

RADIAL: a Fortran subroutine package for the solution of the radial Schrödinger and Dirac wave equations

Francesc Salvat and José M. Fernández-Varea

Facultat de Física (FQA and ICC). Universitat de Barcelona. Diagonal 645, E-08028 Barcelona, Catalonia

8.7.2023 MAYORANA School

Nele Volmer

What we do

- Easy to use Python package
- For both Schrödinger and Dirac radial wave equations & free and bound states
- Include electron screening

Thomas-Fermi approximation

$$V(r) = \phi(r)V_0(r)$$

$$\frac{d^2\phi}{dx^2} = \frac{\phi^{3/2}}{\sqrt{x}}$$

8.7.2023 MAYORANA School

Nele Volmer

Some computational details

- For both Schrödinger and Dirac equation a numerical solution is extended outwards on a grid in r
- Power series ansatz for each interval; get coefficients from the wave equation
- If solution starts at r=0, some modifications are needed

Some computational details - normalization

Difference between bound and free states

- Bound states: Integrate over all intervals and use the sum of these contributions to normalize to one
- Free states:
 - Find outer solution analytically assuming a Coulomb potential
 - Match inner solution with outer solution at a critical radius r_{crit}

For details please come to my poster/talk to me during breaks!

Some computational details – outer solution

Radial Dirac wave functions for ¹³⁶Xe with an electron energy of 2 MeV assuming a Coulomb potential.

Conclusions

- Solution of radial wave equations essential for atomic and nuclear physics
- We are working on an easy to use Python package to solve the radial wave equations
- For Schrödinger & Dirac and free & bound states

Thank you for your attention!