

Possibility of detecting high energy neutrinos from galactic supernovae with ATLAS

in collaboration with Carlos Argüelles, Ali Kheirandish & Kohta Murase

Alex Wen

MAYORANA School Minitalk July 8, 2023

alexwen@g.harvard.edu

CCSN are environments for neutrino physics.

• Low energy neutrinos from nuclear processes

$$(+p \rightarrow \nu_e + n)$$
 $(n \rightarrow p + e^- + \overline{\nu}_e)$ $(\sim 10 \text{ MeV})$

• High-energy neutrino production from collisions

$$p + p \to \pi + \ldots \to \nu_{\mu}, \nu_e + \ldots$$

CCSN are environments for neutrino physics.

SN with CSM produce appreciable neutrino fluxes.

Fluences *Murase & Kheirandish (arXiv:2204.08518)*

Dominant contributions from

- type IIn (~10% of all CCSN)
- type II-P (~50% of all CCSN)

The density profile of the CSM is dependent on parameter D_* : $\rho \propto D_* r^{-2}$

ATLAS is just a large, densely-instrumented, mass.

Hadronic calorimeter 4000 tons!

Muon system (monitored drift tubes)

The detector is sensitive to multiple types of events.

Starting events

Throughgoing events

μ

 \mathcal{U}_{i}

Flavor discrimination is possible for starting events.

Hadronic Calorimeter

Hadronic Shower

Charge discrimination is also possible.

Possible to calculate starting events directly...

We know:

- Flux
- Cross sections
- Detector mass

Starting events energy distribution

10

We get meaningful numbers of starting events from the galaxy.

Simulation of thoroughgoing events is in progress.

- Effectively increase detector volume
- Throughgoing events ~ 100 times more than starting
 - PROPOSAL muon propagator (github.com/tudo-astroparticlephysics/PROPOSAL)
 - LeptonInjector event generator (github.com/Harvard-Neutrino/LeptonInjector)

ATLAS offers different thoroughgoing sky coverage.

-75°

Other similar experiments

Conclusion: it's worth considering ATLAS as a neutrino detector.

Thank you. Questions?

alexwen@g.harvard.edu

SN with CSM are characterized by a spectral index and density parameter.

The cosmic ray number density is a function of proton momentum *p* :

$$\frac{dN_{cr}}{dp} \propto p^{-s}$$

The density profile of the CSM is dependent on parameter D_* :

 $\rho \propto D_* r^{-2}$

Certain SN produce large fluxes of high-energy neutrinos.

Time-integrated neutrino flux from CCSN Murase (arXiv:1705.04750)

 10^{7}

Efficient production of high-energy neutrinos as SN explosion hits circumstellar medium (CSM)

Dominant contributions from

- type IIn (~10% of all CCSN)
- type II-P (~50% of all CCSN)

High-energy neutrinos primarily undergo deep inelastic scattering (DIS).

High-energy neutrinos primarily undergo deep inelastic scattering (DIS).

The hadronic calorimeter, weighing 4000 tons, is useful as a fiducial volume.

The detector is sensitive to multiple types of events.

Angular resolution:

 $u_{\mu}, \nu_{e}, \nu_{\tau}$

 $5 - 15 \, \deg$ Energy resolution:

7 – 17 %

Starting events

Resolutions estimated by Kopp & Lindner (arXiv:0705.2595)

Charge discrimination is also possible.

Supernovae are exploding stars.

A star that's exploding via

- Thermal runaway
- Core collapse (CCSN)

They are classified based on

- No hydrogen in spectrum (type I)
- Hydrogen in spectrum (type II)

SN 2023ixf

SN Classification

- Type I: no hydrogen in spectrum
 - Ia: ionized silicon
 - Ib: no silicon, non-ionized helium
 - Ic: no silicon, no helium
- Type II: hydrogen in spectrum
 - II-P: no narrow lines, Plateau light curve
 - II-L: no narrow lines, Linear light curve
 - IIn: some narrow lines
 - IIb: spectrum evolves to be similar to type Ib

SN Classification

- Type I: no hydrogen in spectrum
 - la: ionized silicon
 - Ib: no silicon, non-ionized helium
 - Ic: no silicon, no helium
- Type II: hydrogen in spectrum
 - II-P: no narrow lines, Plateau light curve
 - II-L: no narrow lines, Linear light curve
 - IIn: some narrow lines
 - IIb: spectrum evolves to be similar to type Ib

- Type Ic - Type IIb - Type II-L - Type II-P - Type IIn

Significant flux lasts for tens to hundreds of days.

Murase (arXiv:1705.04750)

IceCube has good prospects for detection of type II-P and IIn in our galaxy

	Model	s	$\mathcal{N}_{\mu,>1~{ m TeV}}^{ m sig,<10^7~s}$	$\mathcal{N}_{\mu,>0.1~{ m TeV}}^{ m sig,<10^7~s}$	$\mathcal{N}_{\mu,>0.1~{ m TeV}}^{ m sig,< t_{max}}$	$t_{\rm max}$ [s]
Betelgeuse	IIn	2.2	2.7×10^{4}	4.6×10^{4}	$1.2 imes10^5$	$10^{7.5}$
	(10 kpc)	2.0	1.1×10^{5}	$1.7 imes 10^5$	$4.5 imes 10^5$	$10^{7.5}$
	$II-P^{a}$	2.2	2.8×10^2	4.1×10^{2}	$3.8 imes 10^2$	$10^{5.8}$
	(10 kpc)	2.0	1.2×10^{3}	$1.6 imes 10^3$	$1.5 imes 10^3$	$10^{5.8}$
	$II-P^{b}$	2.2	5.5×10^{2}	8.4×10^2	$3.5 imes 10^2$	$10^{5.4}$
	(0.197 kpc)	2.0	$2.3 imes 10^3$	$3.3 imes 10^3$	$1.4 imes10^3$	$10^{5.4}$
	II-L/IIb	2.2	18	27	8.9	$10^{4.6}$
	(10 kpc)	2.0	78	110	36	$10^{4.6}$
	Ibc	2.2	5.4×10^{-3}	8.1×10^{-3}	2.8×10^{-3}	$10^{3.8}$
	(10 kpc)	2.0	2.4×10^{-2}	$3.2 imes 10^{-2}$	1.4×10^{-2}	$10^{4.0}$

Total number of through going muon tracks Murase (arXiv:1705.04750) Will easily detect anything in the galaxy (~25 kpc)

IceCube also has good prospects for *extragalactic* detection of type II-P and IIn in the northern sky

Murase & Kheirandish (arXiv:2204.08518)

We get meaningful numbers of starting events from the galaxy.

Simulation of thoroughgoing events is in progress.

Effectively increase detector volume.

- A column of rock
- 1 km long (range scale of muon)
 40 by 20 m cross-section
 2.6 g/cm³

...weighs around 2×10^9 kg or 2000 kt

ATLAS HCal weighs 4 kt We can expect amplification of ~500 times more events (assuming high efficiency)

Muons travel far in matter.

Effectively increase detector volume.

- A column of rock 1 km long (range scale of muon)
 40 by 20 m cross-section
 2.6 g/cm³

...weighs around 2×10^9 kg or 2000 kt

ATLAS HCal weighs 4 kt We can expect amplification of ~500 times more events (assuming high efficiency)

Event generator for thoroughgoing events.

The distribution of weighted events will give meaningful physical information.

Thoroughgoing events are generated with LeptonInjector.

Geometry (Earth PREM + fiducial cylinder)

Get detector hits & observables

Event generation is working as intended.

The muons are propagated to the detector successfully using PROPOSAL. Muons that reached the detector

 10^{5}

PROPOSAL accounts for stochastic (and continuous) energy losses.

Many relevant inputs to calculate event weight.

Generation Probabilities:

- Energy
- Direction
- Impact
- Depth
- Kinematics
- N events Generated

- Physical Probabilities:
- Energy
- Direction
- Impact
- Depth
- Kinematics
- N events physically
- Interaction

SN 2023ixf observed on May 19, 2023 In M101 galaxy @ 6.4 Mpc

https://www.wis-tns.org/object/2023ixf

SN 2023ixf observed on May 19, 2023 In M101 galaxy @ 6.4 Mpc

 \equiv SN 2023ixf

RA/DEC (2000)

Type Redshift

SN II 0.000804

210.910653712 +54.311674484

14:03:38.557 +54:18:42.03

Discovery Report

 Image: Discovery Report
 Image: Classification Report

Related AstroNotes: <u>2023-119</u>, <u>2023-120</u>, <u>2023-123</u>, <u>2023-124</u>, <u>2023-125</u>, <u>2023-127</u>, <u>2023-128</u>, <u>2023-129</u>, <u>2023-130</u>, <u>2023-132</u>, <u>2023-133</u>, <u>2023-135</u>, <u>2023-131</u>, <u>DRAFT-1296</u>

Reporting Group	Discovering Data Source	Discovery Date	TNS AT	Public	Host Nam
None	None	2023-05-19 17:27:15.000	Y	Y	M101

https://www.wis-tns.org/object/2023ixf

SN 2023ixf observed on May 19, 2023 In M101 galaxy @ 6.4 Mpc

Definitively type II

To early to tell which subtype - need more observation time for light curve & spectrum

Reminders: with IceCube:

- Type II-P has negligible detection probability
- Type IIn has small (30%?) detection probability

https://www.wis-tns.org/object/2023ixf

IceCube has good prospects for detection of type II-P and IIn in our galaxy

Number of through going muon tracks as function of observation time Murase (arXiv:1705.04750) The time range is ~ 10's of days for II-P ~ 100's of days for IIn

Even so, the signal easily dominates over background

IceCube performed a fast search

- Search for muon-like track events in the time period +/-2 days from report (May 17 - 21)
- Assuming E^{-2} spectrum, most events at this coordinate would be in the range [600 GeV, 250 TeV]
- p = 0.18; consistent with background • ν_{μ} flux upper limit of $E^2 \frac{dN}{dE} = 7.3 \times 10^{-2} \text{ GeV cm}^{-2}$

https://www.astronomerstelegram.org/?read=16043

ATLAS MDT system for muon detection

