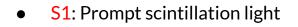
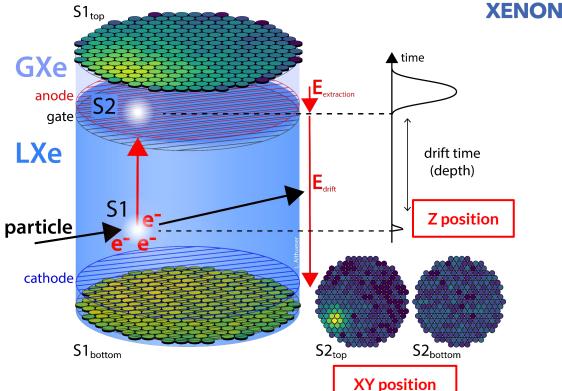
Background Study in S2-only Analysis in XENON Experiments

Yongyu Pan yongyu.pan@lpnhe.in2p3.fr

MAYORANA International School

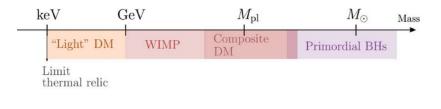

7 July, 2023

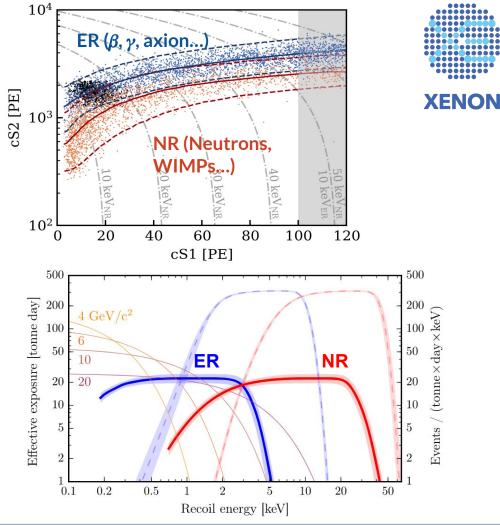

Dual phase Xe Time projection chamber (TPC)

• S2: Secondary scintilation light induced by ionionized electrons

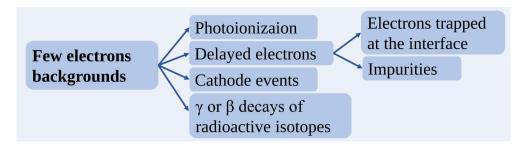
• Position reconstruction: drift time + PMT pattern

• ratio of S2/S1 \Rightarrow electronic recoil (ER) induced by β , γ \Rightarrow nuclear recoil (NR) induced by Neutrons, WIMPs



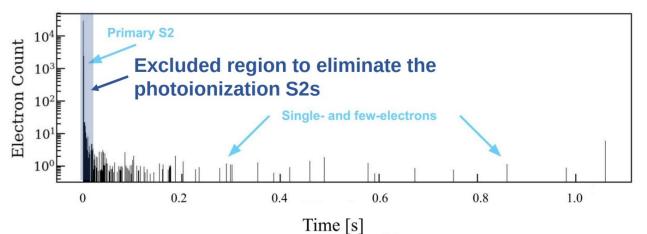

Why S2-only?

Xe TPCs most sensitive to mass of dark matter m $\ge 6~GeV/c^2$


Typical S1 (>3 PE): recoil energy > 3.5 keV Typical S2 (>150 PE) : recoil energy > 0.7 keV (NR) > 0.186 keV (ER)

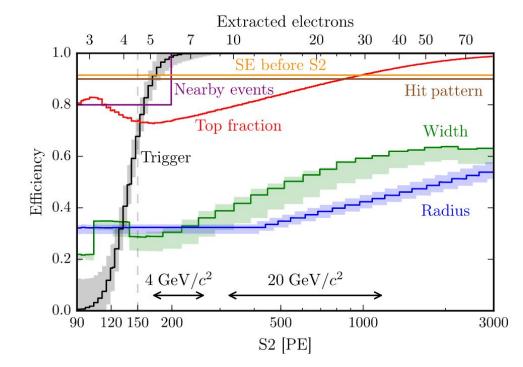
⇒ S2-only lowers the detectable energy threshold for 'light' dark matter

Background analysis of XENON1T



XENON

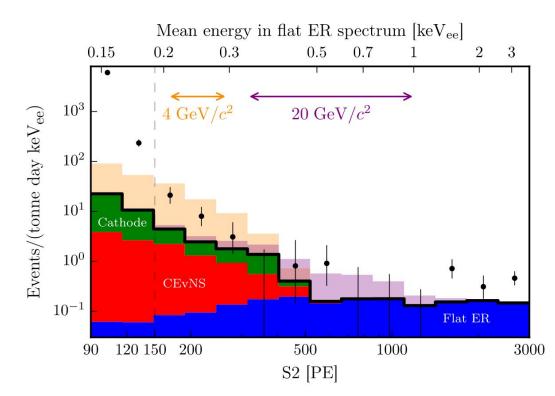
Photoionization electrons:


- induced by photons of S1 ou S2
- within maximum drift time

Background Study in S2-only Analysis in XENON Experiments - Yongyu PAN

Background analysis of XENON1T

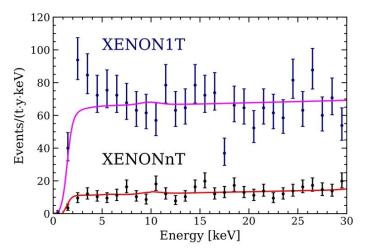
- 1. Data selection:
- Eliminate unphysical events such as gas events, surface events, pileup of single electrons...

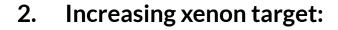


XENON

Background analysis of XENON1T

- 2. Indentifying background:
 - Due to lack of S1 information, we can not identify all backgrounds but set an upper limit



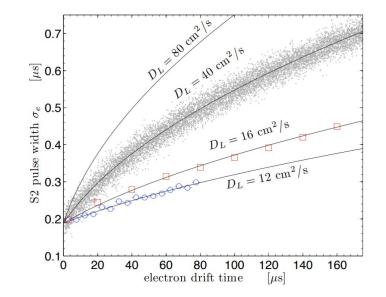

Improvement of XENONnT

1. Reduction of ER background:

Major background: β emitter ²¹⁴Pb, a daughter of ²²²Rn

Rn distillation column + Liquid Xe purification system ⇒Reduction of ER background by a factor of ~6

	XENON1T	XENONnT
Period	2012-2019	2020-2026
Xe mass	2 t Xe target	5.9 t active Xe
Electron lifetime	~0.5 ms	~10 ms
Sensitivity	$4.1 \times 10^{-47} \mathrm{cm}^2$	$2.6 \times 10^{-48} \mathrm{cm}^2$


XENON

Ongoing analysis of XENONnT

1. S2 width cut:

⇒ reject the events with nonphysical drift time

- General: diffusion model
- S2-only scale: first principles

2. Peak classification algorithm

XENON1T: "Primary S2s" and "delayed electrons"

⇒ identify more categories such as "multiple scatters", "photoionization"

⇒ correctly pair primary S2s with their delayed electrons peaks and to register other peaks

XENON

Conclusions & perspectives

XENON

In conclusion:

- S2-only analysis opens up the possibility of exploring 'light' dark matter particles
- Reduction of ER background and greater active xenon mass in XENONnT
- ⇒ more stringent limits on 'light' dark matter set by S2-only analysis

Future works:

- Further study on S2 width cut in low energy region
- Characterization of different populations classified by new peak classification algorithm

Thank you for your attention!

References:

[1] XENON Collaboration, Emission of single and few electrons in XENON1T and limits on light dark matter. Physical Review D, 2022, 106(2): 022001.

[2] XENON Collaboration, Light Dark Matter Search with Ionization Signals in XENON1T. Physical Review Letters, 2019, 123(25): 251801.

[3] XENON Collaboration, Search for New Physics in Electronic Recoil Data from XENONnT. arXiv, 2022[2022-10-18].

[4] SORENSEN P. Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 2011, 635(1): 41-43.