

Isovector and isoscalar spin-multipole giant resonances in the parent and daughter nuclei of double-beta decay triplets

7.7.2023

MAYORANA School

Elina Kauppinen

- Neutrinoless double-beta decay is one of the most interesting subjects in nuclear and particle physics.
- If it were detected, it would mean new physics beyond the standard model.
- By studying the spin-multipole giant resonances in mother and daughter double-beta decay nuclei, one could obtain more information about the wave functions of the virtual state of the intermediate nuclei.

- Neutrinoless double-beta decay is one of the most interesting subjects in nuclear and particle physics.
- If it were detected, it would mean new physics beyond the standard model.
- By studying the spin-multipole giant resonances in mother and daughter double-beta decay nuclei, one could obtain more information about the wave functions of the virtual state of the intermediate nuclei.
- The poster will present a (semi) recent publication.

PHYSICAL REVIEW C 106, 064315 (2022)

Isovector and isoscalar spin-multipole giant resonances in the parent and daughter nuclei of double- β -decay triplets

Elina Kauppinen ^{®*} and Jouni Suhonen [®] Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland

- The study of double-beta decay nuclei and their daughter nuclei.
- The strength functions of isovector and isoscalar spin-multipole giant resonances were studied.
- Used theory was quasiparticle randomphase approximation (QRPA).
- Transitions from the ground state to the excited states were calculated.
 - $J^{\pi} = 0^{-}, 1^{-}, 2^{-} (L = 1, \text{ spin-dipole})$
 - $J^{\pi} = 1^+, 2^+, 3^+$ (L = 2, spin-quadrupole)

Studied nuclei: ⁷⁶Ge, ⁷⁶Se) ^{/82}Se, ⁸²Kr) (⁹⁶Zr, ⁹⁶Mo) (¹⁰⁰Mo, ¹⁰⁰Ru) (¹¹⁶Cd. ¹¹⁶Sn) 128 Te, 128 Xe) 130 Te, 130 Xe) ¹³⁶Xe, ¹³⁶Ba)

- Nucleons pair with each other
 - Protons with protons and neutrons with neutrons
- Nucleon pairs are handled as quasiparticles that behave like bosons
- QRPA excitation operator can be written as

$$Q^{\dagger} = \sum_{a \le b} \left[X^{\omega}_{ab} A^{\dagger}_{ab} (JM) - Y^{\omega}_{ab} \tilde{A}_{ab} (JM) \right]$$

• Two-quasiparticle operators:

$$A_{ab}^{\dagger}(JM) = \mathcal{N}_{ab}(J)[a_a^{\dagger}a_b^{\dagger}]_{JM} \qquad \tilde{A}_{ab}(JM) = -\mathcal{N}_{ab}(J)[\tilde{a}_a\tilde{a}_b]_{JM}$$

• Transition operators for isovector and isoscalar excitations:

$$\mathcal{O}_{L,JM}^{0,\nu} = i^l r^l [Y_L \sigma]_{JM} t_0 \qquad \qquad \mathcal{O}_{L,JM}^{0,s} = i^l r^l [Y_L \sigma]_{JM}$$

- Are used to obtain reduced transition nuclear matrix elements
- Transition strengths are calculated as the square of the transition NME:

 $S_{nJ^{\pi}}^{L} = |(nJ^{\pi}| | \mathcal{O}_{L,J}^{0}| | \mathsf{QRPA})|^{2}$

Example of the results

Figure: Isovector and isoscalar strength functions for ¹³⁶Xe. (a) isovector, L = 1, (b) isovector L = 2, (c) isoscalar L = 1, and (d) isoscalar L = 2.

Observations of the obtained results

- How widely the peaks
 are spread depends on
 the type of the excitation.
 - Isoscalar are more spread in energy.
 - Isovector strength tend to locate in one or few peaks.

Observations of the obtained results

- How widely the peaks
 are spread depends on
 the type of the excitation.
 - Isoscalar are more spread in energy.
 - Isovector strength tend to locate in one or few peaks.

Observations of the obtained results

• Only isoscalar strength functions show notable contributions for all the states.

- Comparison of the results obtained in this study with potential future experimental data may shed light on the reliability of the QRPA-based framework describing the wave functions of nuclear states relevant to two-neutrino and neutrinoless double-beta decay.
- More on the poster!

Thank you!