Reactor Neutrino Energy Reconstruction with Machine Learning Techniques for the JUNO Experiment

Arsenii Gavrikov^{1, 2}(1^{*st*} year PhD at UNIPD)

¹Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy

²INFN Sezione di Padova, Padova, Italy

MAYORANA School 2023, Modica, Italy

A. Gavrikov (UNIPD+INFN)

MAYORANA School 2023

2023-07-06

1/12

Introduction to the JUNO experiment

Jiangmen Underground Neutrino Observatory:

- multipurpose experiment
- under construction
- 53 km away from 8 reactor cores in China
- data taking expected in ${\sim}2024$
- JUNO Collaboration:
 - 76 institutions
 - 716 collaborators
- 2 The main goals of JUNO:
 - neutrino mass ordering (3 σ in 6 years)
 - precise measure of oscillation parameters $\sin^2 \theta_{12}, \Delta m^2_{21}, \Delta m^2_{31}$

The Central Detector:

- detection channel: $\overline{\nu}_e + p \rightarrow e^+ + n$;
- deposited energy converts to optical light
- the largest liquid scintillator detector: 20 kt
- 77.9% photo-coverage: 18k 20", 26k 3" photo-multiplier tubes (PMTs)

A. Gavrikov (UNIPD+INFN)

Machine Learning (ML) in particle physics

- ML methods are used at all levels of data processing in many particle physics experiments:
 - signal/background discrimination
 - event selection in the trigger
 - event simulation
 - anomaly detection
 - identification, etc.
- Why is ML useful for particle physics?
 - Faster. More precisely, with proper training
 - Adequate for many purposes simultaneously: event simulation, analysis, reconstruction, identification, etc.
 - GPU friendly by construction, which is important for big data processing
- Machine-learning algorithms use statistics to find patterns in massive amounts of data
- Our task is a supervised learning problem (regression)

御 とう ヨ とう ヨ と

Problem statement

Datasets

- Two datasets: for training and for testing
- generated by the Monte Carlo method

Data description:

- ositron events
- uniformly spread in the volume of the central detector
- **3** $E_{kin} \in [0, 10]$ MeV. $E_{dep} = E_{kin} + 1.022$ MeV
- Training dataset:
 - 2.25 million events
 - S uniformly distributed in kinetic energy E_{kin}

- detector + electronics simulation
- using the official JUNO software

- Testing dataset:
 - subsets with discrete kinetic energies:
 - **(a)** 0, 0.1, 0.3, 0.6, 1, 2, ..., 10 [MeV]
 - $\sum = 0.7$ million events: each subset contains 50k

Aggregated features

We use aggregated information from the whole array of PMTs as features for models:

- AccumCharge the accumulated charge on fired PMTs
- 2 nPMTs the total number of fired PMTs
- Ocordinates of the center of charge:

$$(x_{\rm cc}, y_{\rm cc}, z_{\rm cc}) = \vec{r}_{\rm cc} = \frac{\sum_{i=1}^{N_{\rm PMTs}} \vec{r}_{\rm PMT_i} \cdot n_{{\rm p.e.},i}}{\sum_{i=1}^{N_{\rm PMTs}} n_{{\rm p.e.},i}}$$

and its radial component: $R_{
m cc} = |ec{r}_{
m cc}|$

Oordinates of the center of FHT:

$$(x_{\text{cht}}, y_{\text{cht}}, z_{\text{cht}}) = \vec{r}_{\text{cht}} = \frac{1}{\sum_{i=1}^{N_{\text{PMTs}}} \frac{1}{t_{\text{ht},i}+c}} \sum_{i=1}^{N_{\text{PMTs}}} \frac{\vec{r}_{\text{PMT}_i}}{t_{\text{ht},i}+c},$$

and its radial component: $R_{
m cht} = |ec{r}_{
m cht}|$

- **6** $\gamma_y^{\rm cc} = \frac{y_{\rm cc}}{\sqrt{x_{\perp}^2 + z_{\perp}^2}}$ $\checkmark \gamma_x^{\text{cc}} = \frac{x_{\text{cc}}}{\sqrt{z_{\text{cc}}^2 + u_{\text{cc}}^2}}$ (a) $\theta_{cc} = \arctan \frac{\sqrt{x_{cc}^2 + y_{cc}^2}}{x_{cc}^2}$ **9** $\phi_{\rm cc} = \arctan \frac{y_{\rm cc}}{r_{\rm cc}}$ **(1)** $\rho_{\rm cc} = \sqrt{x_{\rm cc}^2 + y_{\rm cc}^2}$
- with 7 similar features for the components of the center of FHT

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

6/12

Aggregated features

- Percentiles of FHT and charge distributions:
 - { $ht_{2\%}$, $ht_{5\%}$, $ht_{10\%}$, $ht_{15\%}$, ..., $ht_{90\%}$, $ht_{95\%}$ }
 - $\bullet \ \{pe_{2\%}, pe_{5\%}, pe_{10\%}, pe_{15\%}, ..., pe_{90\%}, pe_{95\%}\}$

- E = 1.02 MeV - E = 5.02 MeV - E = 9.02 MeV

- Differences between percentiles for FHT:
 - { $ht_{5\%-2\%}$, $ht_{10\%-5\%}$, ..., $ht_{95\%-90\%}$ }
- Moments for FHT and charge distributions:
 - $\bullet \ \{ht_{mean}, ht_{std}, ht_{skew}, ht_{kurtosis}\}$
 - $\{pe_{mean}, pe_{std}, pe_{skew}, pe_{kurtosis}\}$

200 0.75 0.75 30 F(nPE) 150 F(t) 0.5 0.5 200 100 0.25 0.25 50 iii 0 0 200 400 0 600 800 1000 200 400 600 800 1000 0 n nPE t. ns

CDFs and PDFs for FHT (left) and charge (right) distributions. $R \simeq 0$ m, E_{kin} varied. Dashes lines show mean values, $q \approx 0$

A. Gavrikov (UNIPD+INFN)

MAYORANA School 2023

- E = 1.02 MeV - E = 5.02 MeV - E = 9.02 MeV

Feature selection

- Feature selection procedure is performed with a greedy algorithm using Boosted Decision Trees (BDT)
- Optimized **set of features** (sorted by *importance*):

Models description: BDT

- Optimized hyperparameters (using Grid Search):
 - The maximum depth of the tree: 11
 - 2 Number of trees in the ensemble: \simeq 350
 - Learning rate: 0.08

- The optimized set of features:
 - 15 out of 91 features
 - 6 charge-related
 - + 8 time-related
 - + number of fired PMTs

Models description: FCDNN

Fully-connected deep neural network (FCDNN):

Input layer Hidden layers 32 units h_1 128 units h₄ Elu Elu AccumCharge Elu R_{cht} Elu Elu MAPE loss 15 features $\rightarrow E_{dep}$ (linear) Adam ht35%-30% Elu Elu Elu

- Optimization of the hyperparameters using BayesianOptimization
- Training with early stopping
- Validation dataset: 200k events
- The optimized set of features

Results

Metrics:

- Defined by a Gaussian fit of the $E_{\text{predicted}} E_{\text{dep}}$ distributions
- <u>*Resolution*</u>: σ/E_{dep} , where σ standard deviation of the fit
- <u>Bias</u> μ/E_{dep} , where μ mean of the fit

Parameterization:

Model	$a \pm \Delta a$	$b \pm \Delta b$	$c \pm \Delta c$
BDT	2.50 ± 0.12	0.71 ± 0.05	1.38 ± 0.29
FCDNN	2.45 ± 0.09	0.71 ± 0.04	1.36 ± 0.23

A. Gavrikov (UNIPD+INFN)

MAYORANA School 2023

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 2023-07-06

11/12

э

- Energy reconstruction using the information collected by PMTs
- *Aggregated* features approach
- The following ML models are used: BDT, FCDNN
- As a result *achieved*:
 - High **quality** <3% @ 1 MeV, required for physics goals of JUNO
 - ② Great computation speed, thanks to a small set of aggregated features