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Introduction to the JUNO experiment

@ Jiangmen Underground Neutrino Observatory:
o multipurpose experiment

under construction

53 km away from 8 reactor cores in China

data taking expected in ~2024 .

JUNO Collaboration: 3300 7 S A IAWL | :
e 76 institutions L P e oton
@ 716 collaborators

© The main goals of JUNO:

Acrylic spherical

@ neutrino mass ordering (3¢ in 6 years) A e
@ precise measure of oscillation parameters ‘
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© The Central Detector: promp-delay

7 (0.511 MeV) delayed coincidence

o detection channel: 7, + p — e* + n; o e elayed
@ deposited energy converts to optical light
o the largest liquid scintillator detector: 20 kt prompt
@ 77.9% photo-coverage: 18k 20, 26k 3”

photo-multiplier tubes (PMTs)

Y (22Mev)

ov (UNIPD+INFN)



Machine Learning (ML) in particle physics

@ ML methods are used at all levels of data processing in many particle physics experiments:

o signal/background discrimination
event selection in the trigger
event simulation

anomaly detection

identification, etc.

@ Why is ML useful for particle physics?

o Faster. More precisely, with proper training

o Adequate for many purposes simultaneously: event simulation, analysis, reconstruction,
identification, etc.

o GPU friendly by construction, which is important for big data processing

@ Machine-learning algorithms use statistics to find patterns in massive amounts of data

@ Our task is a supervised learning problem (regression)
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Problem statement

Charge

40

An example of a positron event with deposited energy ~6 MeV. | The grey sphere | — the primary vertex.
B Charge at PMT First Hit Time (FHT) at PMT [ ] PMT position
We want to reconstruct:

Deposited energy Fgep, with resolution < 3% @ 1 MeV.
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@ Two datasets: for training and for testing @ detector + electronics simulation
@ generated by the Monte Carlo method o using the official JUNO software

Data description:
@ positron events
@ uniformly spread in the volume of the central detector
@ FEin € [0,10] MeV. Egep = Elin + 1.022 MeV

o Training dataset: o Testing dataset:
© 2.25 million events © subsets with discrete kinetic energies:
@ uniformly distributed in @ 0,01,03,06,1,2, .., 10 [MeV]

kinetic energy Fiin @ > = 0.7 million events: each subset

contains 50k
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Aggregated features

We use aggregated information from the whole array of PMTs as features for models:

@ AccumCharge — the accumulated charge on fired PMTs
@ nPMTs — the total number of fired PMTs

@ Coordinates of the center of charge:

NPMTS kg
Doiml TPMT, e
Npmrs
Zi:l n

and its radial component: Re. = |7ec|

(mccv Yec, ch) = Tee =
p.e.,t

@ Coordinates of the center of FHT:

(xchtv Yeht, Zcht) = Tcht =

Npemts 1 tes 4’
> Titc i=1 he,i +-

and its radial component: Rey = |Fehe

ov (UNIPD+INEN)

MAYORANA School 2023

® 666 00 ©

’YCC — Zec
VLSS

,.YCC — Yee

Yo Veata

Lec

cC
Yo = 75—
LY &
VrEt+yd

cc

0. = arctan
@cc = arctan Yec
Zcc
P2 o
Jee = RE, - sin B

Pcc = xgc + yc2c

with 7 similar features for the
components of the center of FHT
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Aggregated features

@ Differences between percentiles for FHT:
o {htso—29%, hti0%—5%, .-, Ntoses—g0% }

@ Percentiles of FHT and charge distributions:
o {htao, htsos, htioes, htisos, ..., htooss, htgses }

© {pexs, pesw, Pe1os, Peists, ---, Pesoss, Peosss } @ Moments for FHT and charge distributions:

° {htmeam htsld: htskew> htkurlosis}
4 {pemeany P€std, PEskew, pekunosis}
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CDFs and PDFs for FHT (left) and charge (right) distributions. R ~ 0 m, Fj, varied. Dashes lines show mean values.
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Feature selection

@ Feature selection procedure is performed with a greedy algorithm using Boosted Decision Trees (BDT)
@ Optimized set of features (sorted by importance):
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Models description: BDT

@ Optimized hyperparameters (using Grid Search):

@ The maximum depth of the tree: 11
@ Number of trees in the ensemble: ~350
© Learning rate: 0.08

~350 trees in the ensemble

@ The optimized set of features:

© 15 out of 91 features

© 6 charge-related

© + 8 time-related

@ + number of fired PMTs
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Models description: FCDNN

Fully-connected deep neural network (FCDNN):
@ Optimization of the

Input layer Hidden layers hyperparameters using
32units : by 128units by BayesianOptimization

@ Training with early stopping

@ Validation dataset: 200k
events

15 features

@ The optimized set of features

2023-07-06

A. Gavrikov (UNIPD+INFN) MAYORANA School 2023



Maetrics:
@ Defined by a Gaussian fit of the 34 ——
Eprediced — Fep distributions i + FCDNN
) ° 25 i
@ Resolution: o/ Egep, where o — 2
standard deviation of the fit S 3 \
=1
@ Bias pu/ Eep, where p — mean of ] =
the fit & 15
.\k'-\.-\'
—
.. 1
Parameterization: 05
o O
X
o a 2 . 2 g 0 g = == = —-— —_— —-— - =
Edep 1/ Edep Edep -05 F

1 2 3 4 5 6 7 8 9 10
Deposited energy, MeV

Model a+ Aa b+ Ab c+ Ac
BDT 2.50 £0.12 | 0.71 £0.05 1.38 +0.29
FCDNN | 2.454+0.09 | 0.71 +£0.04 | 1.36 +0.23
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JUNO energy reconstruction summary

o Energy reconstruction using the information collected by PMTs
e Aggregated features approach

o The following ML models are used: BDT, FCDNN

e As aresult achieved:
© High quality <3% @ 1 MeV, required for physics goals of JUNO
© Great computation speed, thanks to a small set of aggregated features
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