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The Standard Model
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Comprises all observed fundamental 
particles:

Fermions (spin-1/2)
● Quarks – up and down type
● Leptons – charged and neutrinos

Scalar bosons (spin-0)
● Higgs only known scalar

Vector bosons (spin-1)
● Gluons mediate strong interactions
● Photon mediates electromagnetism
● W and Z mediate weak interactions
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The LHC: Beyond the Standard Model
• 27km ring of 

superconducting magnets

• Oppositely-travelling proton 
beams collide at  
0.99999999c

• 14 TeV centre-of-mass 
energy
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Why heavy vectors? An example
Models with heavy vectors are ubiquitous in BSM theories
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Simplified models
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• Only considers a few new particles/interactions
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Explicit models
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expressible as functions of 
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There exists a multitude of theories 
beyond the SM

● Many theories that solve different 
problems

● Many different theories that solve the 
same problem

● Not possible for one experiment to test 
all the parameters of all the models 

separately

Summary so far

ATLAS & CMS produce enormous 
amounts of data

● Search results are generic, result of 
statistical analysis of data

● Many searches for the same resonance 
in different channels

● Too many theories and too many 
experiments, with no way of knowing 

which theory is worth examining

Theory Experiment
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Cross section looks like

So the parton luminosity function can be written

 

Drell-Yan production

CoM energies at or above 13 TeV  →  consider all valence and sea quark combinations,
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Drell-Yan production

CoM energies at or above 13 TeV  →  consider all valence and sea quark combinations,
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DY – parton luminosities
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Vector boson fusion production

We can then define an effective luminosity for the emission of two longitudinally 
polarised gauge bosons from the quarks qi and qj:

Parton luminosity calculation more involved. Introduce 
electroweak splitting functions for longitudinally polarised gauge 
bosons only*:
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Vector boson fusion production
Putting it all together, the VBF parton luminosity is
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Vector boson fusion production
Putting it all together, the VBF parton luminosity is

Effective luminosity contains terms                , leading to overall suppression with respect to DY.

Total cross section is then
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VBF – parton luminosities
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Summary of vector producion
Production of (colourless) heavy vector bosons can occur in a pp collision via two channels:

1)  Drell-Yan

● Quark-quark production
● Parton luminosity easy to compute, given knowledge of PDFs

2)  Vector boson fusion

● Both quarks split off a (longitudinally polarised) gauge boson
● Gauge boson annihilation produces new vector V
● Parton luminosity suppressed by factors of           , due to the gauge boson splitting 

functions

Vector boson fusion has been explored far less than Drell-Yan for this reason. Can it be a 
viable search channel for higher energy/luminosity colliders?

 

13



VBF production of heavy vector triplets

We focused on a simplified model of heavy vectors 
that transform as triplets under SU(2)L

● What are the phenomenological features of the 
cross section that determine the rate of DY 
production relative to VBF?

● Is there a region of the parameter space for 
which VBF is the dominant production mode?

● Is the LHC and HL-LHC well-placed to leverage 
this production mode?
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Why triplets?
First consider how SM fields transform under the SM gauge group:
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The production cross section
What are the ingredients that enter into a comparison between HVT production via DY and 
VBF? We look at the cross section:
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Parton luminosities suppress VBF

● VBF suppressed with respect to DY by a factor between 10-5 and 10-7, depending on resonance 
production channel, mass, and collider energy

● Significantly outweighs VBF enhancement from numerical factors NDY/VBF

19



Decay widths
The competitiveness of VBF comes down solely to the decay widths, and, therefore, down 
to our simplified model parameters.

● The decay width into two bosons needs to be much larger than the decay width into 
two light quarks
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Decay widths
The competitiveness of VBF comes down solely to the decay widths, and, therefore, down 
to our simplified model parameters.

● The decay width into two bosons needs to be much larger than the decay width into 
two light quarks

● For VBF to overcome DY (whilst 
still satisfying the narrow width 
approximation), we require that

● In the limit of vanishing cq, we then have

Grows faster with mass than the reduction 
given by parton luminosities – VBF 
increasingly important for larger resonance 
masses!
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Putting it all together
For very small cq, we can identify regions of the parameter space where the VBF cross 
section dominates.
See that for larger resonance masses, the VBF-dominant areas increase.
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Higher masses

The area for which                        
increases with resonance mass, but          
            also decreases

● Parton luminosities decrease rapidly

● VBF searches will eventually lose 
sensitivity

●                     also difficult to probe
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Two-body final states
Now that we know the relevant region of our simplified parameter space, 
what is the relative importance of each decay channel?

● Decays into di-jets generally 
irrelevant for VBF studies

● cq3 can be different to light 
quark couplings

● Di-lepton/ heavy di-quark 
decays can dominate over di-
boson in certain regions of 
parameter space

24



Current results from ATLAS and CMS
Various VBF-specific searches have been done in run II of the LHC, particularly in the di-bosonic 
 and di-leptonic final state.
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Dominant VBF-production 
above 1 TeV, almost total 
decay to di-bosons

Reasonable decay to di-
leptons. Only theoretically 
consistent above 0.8 TeV
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Various VBF-specific searches have been done in run II of the LHC, particularly in the di-bosonic 
 and di-leptonic final state.

DY is most constraining at 1 
TeV, but increase to 1.5 TeV, 
and to 2 TeV…

DY drops off, and VBF is 
best
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HL-LHC: Projected limits
In the future, the LHC is well-placed to further leverage the dominant VBF production mode 
present in certain regions of the HVT parameter space. We look to the HL-LHC:

Significantly higher mass reach 
for VBF studies in di-boson final 
state

● 1.7 TeV for DY, versus
● 2.5 TeV for VBF
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In the future, the LHC is well-placed to further leverage the dominant VBF production mode 
present in certain regions of the HVT parameter space. We look to the HL-LHC:

Significantly higher mass reach 
for VBF studies in di-boson final 
state

● 1.7 TeV for DY, versus
● 2.5 TeV for VBF

No VBF di-lepton projections 
yet, but similar bound expected
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Next steps: Extrapolation of results

arXiv:1502.01701

● Dedicated extrapolation procedure for DY 
production to future colliders already exists

● For a given resonance mass, experimental 
limit depends exclusively on the number of 
background events

● Equate the number of events and rescale by 
L to obtain extrapolated curve
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Next steps: Extrapolation of results

arXiv:1502.01701

● Dedicated extrapolation procedure for DY 
production to future colliders already exists

● For a given resonance mass, experimental 
limit depends exclusively on the number of 
background events

● Equate the number of events and rescale by 
L to obtain extrapolated curve

Can this procedure be applied to VBF?

29
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Summary
Vector boson fusion is, as of yet, an under-utilised production mode in searches at ATLAS 
and CMS. Current experimental capabilities place it as a competitive production mode, as 
shown by using a simplified model of heavy vector triplets.

● Simplified models are incredibly useful for collider phenomenology, as our results may be 
mapped onto a wide class of explicit models

● Vector boson fusion may be the dominant production mode in those models whose light 
quark couplings are very small

● In this region of parameter space, LHC searches in the VBF channel have a higher mass 
reach than those of DY for resonance masses above 1 TeV

● HL-LHC VBF searches have an even higher mass reach

● Dedicated extrapolation procedure would show how VBF production would fare at the 
HE-LHC and 100 TeV FCC

30



Thank you
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