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The Standard Model

Comprises all observed fundamental
particles:

Fermions (spin-1/2)

e Quarks —up and down type
» Leptons —charged and neutrinos

Scalar bosons (spin-0)

 Higgs only known scalar

Vector bosons (spin-1)

GAUGE BOSONS

» Gluons mediate strong interactions
 Photon mediates electromagnetism
W and Z mediate weak interactions
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beams collide at
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* 14 TeV centre-of-mass
energy
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The LHC: Beyond the Standard Model

* 27km ring of
superconducting magnets

* Oppositely-travelling proton
beams collide at
0.99999999c

* 14 TeV centre-of-mass
energy

ATLAS and CMS produce an
enormous amount of data (over 90
petabytes) per year
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Models with heavy vectors are ubiquitous in BSM theories

The “left-right” (LR) model [SU(3)c x SU2)L x SU2)r x U(1)x — SU(3)e x SU(2), X U(l)Y}

* Proposes a solution to neutrino mass generation
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Spontaneousely broken to U(1)eny | Spontaneously broken to U(1)y
Standard Model Higgs Hp, Higgs Hp breaks symmetry
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Simplified models

Simplified Lagrangian easily compared with
data and mapped onto explicit models Resonance searches

Explicit models / (o x BR)

Theory — > L3 = Data

Simplified parameters
expressible as functions of
explicit model parameters

arxiv.org/abs/1402.4431

Experimental limits

* Model-independent framework anveft?d into limits on
* Only considers a few new particles/interactions simplified parameters
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beyond the SM amounts of data
* Many theories that solve different » Search results are generic, result of
problems statistical analysis of data
* Many different theories that solve the * Many searches for the same resonance
same problem in different channels
» Not possible for one experiment to test e Too many theories and too many
all the parameters of all the models experiments, with no way of knowing
separately which theory is worth examining
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Drell-Yan production

Cross section looks like
o(Pr, P) = Z/dx1d$2fi(x1aﬂ2)fj($27ﬂ2)&ij(p1>p2aaS(M2)7Q2/U2)
i

So the parton luminosity function can be written

S =
ds 1406

| dmideal(ran.p)oag (e i) + (1 2066 51— )

CoM energies at or above 13 TeV - consider all valence and sea quark combinations,
i,j € {u,u,d,d,c,¢,s,5,b,b}




Drell-Yan production

Cross section looks like
o(Pr, P) = Z/dx1d$2fi(xlaﬂ2)fj($27,LLQ)&ij(plaanaS(M2)7Q2//~L2)
i

So the parton luminosity function can be written

S =
ds 1406

Ldmdmzw@-(azl, 2)as (s, 1)) + (1 D)8(5/521 — w3).
0 7

CoM energies at or above 13 TeV - consider all valence and sea quark combinations,
i,j € {u,u,d,d,c,¢,s,5,b,b}

Easy to compute, given knowledge of PDFs
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Vector boson fusion production

Parton luminosity calculation more involved. Introduce
electroweak splitting functions for longitudinally polarised gauge
bosons only*:

« 1l—=x
fq/Wf (z) = drsin? Oy x
w r) = 2 — —sin“ Oy + —sin” 6
Juz. (@) 167 cos2 Oy sin? Oy ( 3 Vg w)
o 1l—2 8 16
xr) = 2 — —sin? Oy + — sin* 6
Jayz. () 167 cos? Oy sin? Oy ( 3 g w)

We can then define an effective luminosity for the emission of two longitudinally
polarised gauge bosons from the quarks q; and q;:

1 /
AN dx , 3
G /GLG (g — y) _/£ 7/ fCIi/GL(x )fQj/GL (CE’)

10
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Vector boson fusion production

Putting it all together, the VBF parton luminosity is

dL
dz

_ Ydy [*dx ) ) v y gdl
pp/GLG, a sz:/z ?/w ?[fqz'(xm“ )‘|‘fq_i(x;/~b )HfQj(EMU’ )+fq_j(57/1/ )]d—f

z
7:9; /GLG, (§ B ;)

11
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Vector boson fusion production

Putting it all together, the VBF parton luminosity is

dL
dz

! dy Ude y y il
/GG, Z/ ?L o o) o fa iU, o) + (o))

z
7:9; /GLG, (§ B ;)

Effective luminosity contains terms 04]23\}\/, leading to overall suppression with respect to DY.
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Putting it all together, the VBF parton luminosity is

dL
dz

_ Ydy [*dx ) ) v y o dL r
pp/GLG,L—ZZ’j)/z L A [E G B T (g_g)j

K&

Effective luminosity contains terms & Oq%;w, leading to overall suppression with respect to DY.
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e
Vector boson fusion production

Putting it all together, the VBF parton luminosity is

dL
dz

_ Ydy [*dx ) ) v y o dL r
pp/GLG,L—ZZ’j)/z L A [E G B T (g_g)j

K&

Effective luminosity contains terms & Oq%;w, leading to overall suppression with respect to DY.

Total cross section is then

O_GLG/L—>V(

1
0pp—>GLG’qu—>qu(s) _ /2 dzd_L 2s)

pp/GLG",

11



dL/ds [pb]
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Summary of vector producion

Production of (colourless) heavy vector bosons can occur in a pp collision via two channels:
1) Drell-Yan

e Quark-quark production
e Parton luminosity easy to compute, given knowledge of PDFs

2) Vector boson fusion

e Both quarks split off a (longitudinally polarised) gauge boson

e Gauge boson annihilation produces new vector V

e Parton luminosity suppressed by factors of agw, due to the gauge boson splitting
functions

Vector boson fusion has been explored far less than Drell-Yan for this reason. Can it be a
viable search channel for higher energy/luminosity colliders?

13
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AnstracT: We clarify the role of vector boson fusion (VBF) in the production of heavy
vector triplets at the LHC and the HL-LHC. We point out that the presence of VBF g |S th e LH C a n d H L_ LH C WeI I_p | a Ced to |eve ra ge
production leads to an unavoidable rate of Drell-Yan (DY) production and highlight the . . ?
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VBF production outperforms DY production for resonance masses above 1 TeV in certain
regions of the parameter space. We define two benchmark parameter ponts which provide
competitive production rates in vector boson fusion.
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Why triplets?

First consider how SM fields transform under the SM gauge group:
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e
Heavy vector triplets: A simplified model

Consider a simplified model of a heavy vector, in addition to the particle content of the SM, that
transforms under SU(3). x SU(2), x U(1)y as

Ve~ (1,3,0), a=1, 2, 3

V5igiv?2
Have the familiar relations: pE o e T 0y

p V2 p p

Full Lagrangian:

L = _lD VaD[uvu]a + m%/ Vay ra
V= 4 [ V] 2 n
) —H g2 a
+igyeg VIH 1D H + “—cpViJh
gv

+ vy eanc VDMV 4 ghevy VeV HNH = Sevywea W VIV
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e
The production cross section

What are the ingredients that enter into a comparison between HVT production via DY and
VBF? We look at the cross section:

Iy _gq dLgg I'vocer dlger
olpp =V +X) = Npy Z My ds lsear + NVBF Z My a3 lsmar
4,7 €p v G,G'ep '
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Parton luminosities suppress VBF

(13 TeV (solid)
[|14 TeV (dashed)
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Vs = My [TeV] Vs = My [TeV] Vs = My [TeV]

» VBF suppressed with respect to DY by a factor between 10 and 107, depending on resonance
production channel, mass, and collider energy

 Significantly outweighs VBF enhancement from numerical factors Nov/vsr
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e
Decay widths

The competitiveness of VBF comes down solely to the decay widths, and, therefore, down
to our simplified model parameters.

» The decay width into two bosons needs to be much larger than the decay width into
two light quarks
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Decay widths

The competitiveness of VBF comes down solely to the decay widths, and, therefore, down
to our simplified model parameters.

» The decay width into two bosons needs to be much larger than the decay width into
two light quarks

T r L o e For VBF to overcome DY (whilst
viowpzy LTveswiwg 1 gven |, (CQ) still satisfying the narrow width
| VRS 2 Tyogg 12 g cZ approximation), we require that

ca/9v < 0.05

 In the limit of vanishing c,, we then have

T . 4 Grows faster with mass than the reduction
viswirzy 1 My, > given by parton luminosities — VBF
I‘(Cfo) 12 m%/ increasingly important for larger resonance
V=—aqq’ masses!
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e
Putting it all together

For very small c,, we can identify regions of the parameter space where the VBF cross
section dominates.
See that for larger resonance masses, the VBF-dominant areas increase.
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Higher masses

1000

The area for which oy pr/opy > 1
increases with resonance mass, but
ov BF also decreases

100

10
e Parton luminosities decrease rapidly

e VBF searches will eventually lose

OVEBF [fl}]

sensitivity
0.100
e gycy < lalso difficult to probe
0.010
0.001H~
0
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e
Two-body final states

Now that we know the relevant region of our simplified parameter space,
what is the relative importance of each decay channel?

e Decays into di-jets generally
irrelevant for VBF studies

e 43 can be different to light
guark couplings

e Di-lepton/ heavy di-quark
decays can dominate over di-
boson in certain regions of
parameter space
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e
Current results from ATLAS and CMS

Various VBF-specific searches have been done in run Il of the LHC, particularly in the di-bosonic
and di-leptonic final state.

Channel Theoretical benchmark
ZW — 't VBF-DB (di-boson):
Zh — leptons hadrons gvey = 4

WW., W Z — leptons hadrons ce/gv = ¢q/9v = cqg3/9v =0

0l VBF-DL (di-lepton):
lv gven =3, co/gy = —3
TV Cq/9v = €43/ v
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Current results from ATLAS and CMS

Various VBF-specific searches have been done in run Il of the LHC, particularly in the di-bosonic

and di-leptonic final state.

Channel

Theoretical benchmark

ZW — tul'l’
Zh — leptons hadrons
WW, W Z — leptons hadrons

VBF-DB (di-boson):
gvcyg =4
ce/gv = ¢q/gv = cg3/gv =0

174
(47,

TV

VBF-DL (di-lepton):
gven =3, c/gy = —3

Cq/gV — CqB/QV

Dominant VBF-production
above 1 TeV, almost total
decay to di-bosons

Reasonable decay to di-
leptons. Only theoretically
consistent above 0.8 TeV

25



e
Current results from ATLAS and CMS

Various VBF-specific searches have been done in run Il of the LHC, particularly in the di-bosonic
and di-leptonic final state.
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Current results from ATLAS and CMS

Various VBF-specific searches have been done in run Il of the LHC, particularly in the di-bosonic
and di-leptonic final state.
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Current results from ATLAS and CMS

Various VBF-specific searches have been done in run Il of the LHC, particularly in the di-bosonic
and di-leptonic final state.
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e
HL-LHC: Projected limits

In the future, the LHC is well-placed to further leverage the dominant VBF production mode
present in certain regions of the HVT parameter space. We look to the HL-LHC:

= Significantly higher mass reach
HL-LHC, I ~ 3ab™" HL-LHC, L ~ 3ab f VBF t d . d—b ﬁ I
100l VBE-DB. V* - w2 || 1001 veros v s ww || for studies in di-boson fina
state
- = « 1.7 TeV for DY, versus
=T | =R S
= = e 2.5TeV for VBF
= sal
X *
a} i
001 001
. . o .
10 0 10 0
My+ [TeV] My [TeV]
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In the future, the LHC is well-placed to further leverage the dominant VBF production mode
present in certain regions of the HVT parameter space. We look to the HL-LHC:

1074

HL-LHC, L ~ 3ab™
VBF-DL, V'* = v |-

ATL-PHYS-PUB-2018-044 1

M [ RES [T@\z‘r]

100+

o x BR[fb]

0011

HL-LHC, L ~ 3ab™"
VBF-DL, V" — 4

“\ \... ATL-PHYS-PUB-2018-044 .-

<. N

CMS-PAS-FTR-21-005

|

3 ™ g 6
ﬂ f Vo [TPV']

3

Significantly higher mass reach

for VBF studies in di-boson final
state

e 1.7 TeV for DY, versus
e 2.5TeV for VBF

No VBF di-lepton projections
yet, but similar bound expected
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e
Next steps: Extrapolation of results

e Dedicated extrapolation procedure for DY
production to future colliders already exists

« For a given resonance mass, experimental
limit depends exclusively on the number of
background events

B(s, L, My) = B(so, Lo, MY)

e Equate the number of events and rescale by
L to obtain extrapolated curve

L
o x BR](s, L; My) = fo[a X BR](SQ,LO;M‘(})

arXiv:1502.01701
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arXiv:1502.01701

Can this procedure be applied to VBF?
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e
Summary

Vector boson fusion is, as of yet, an under-utilised production mode in searches at ATLAS
and CMS. Current experimental capabilities place it as a competitive production mode, as
shown by using a simplified model of heavy vector triplets.

e Simplified models are incredibly useful for collider phenomenology, as our results may be
mapped onto a wide class of explicit models

» Vector boson fusion may be the dominant production mode in those models whose light
quark couplings are very small

e In this region of parameter space, LHC searches in the VBF channel have a higher mass
reach than those of DY for resonance masses above 1 TeV

e HL-LHC VBF searches have an even higher mass reach

» Dedicated extrapolation procedure would show how VBF production would fare at the
HE-LHC and 100 TeV FCC
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