Backgrounds & Fast Simulation

G.Calderini, G.Marchiori, E. Paoloni I.N.F.N. & Università di Pisa

Some preliminary thoughts

Background Simulation Goals

- * Optimize the Collider/ Collider Detector Interface/ Detector
 - * Figures of merit:
 - ***** Occupancies
 - * Impact on performances
 - * Radiation damages
 - * Impact on some physical analyses:
 - * neutrino reco. (extra tracks/neutral energy)

Fast Simulation Goal

Detector & Collider optimization:

- Figure of merit: precision/ sensitivity/reach of Physical measurements (Simulation)
- Penalty function: costs/ reliability (experts judgement)

Fast Simulation -Background commonalities

- * Both simulations requires a description of sub detectors geometries/material/granularity
 - * A common language to describe the same detector for both simulations
- * Some Physics analyses can be affected by machine backgrounds
 - * Definition of a language to feed the fast simulation with machine backgrounds (sort of fast digi-mixing)

* A typical Touschek background event

* A typical Touschek background event

1: Primary particle

* A typical Touschek background event

2: Showering

1: Primary particle

* A typical Touschek background event

2: Showering

3: background

1: Primary particle

- * A fast background simulation is meaningful only if a faithful model of the showers is present
 - * Does Leelaps fulfill this requirements?
 - * Can Leelaps be tuned for this purpose?
- * Historic perspective: BaBar & PEP-II design was optimized without a full Geant simulation.
 - * Single beam background is dominant
- * SuperB dangerous background is driven by luminosity

Embedding of backgrounds in Fast Simulation

* Questions waiting for answers

* Tracking:

- * Can Track-err reliably handle tracks originating far from the IP?
- * Calorimetry:
 - * How the fast simulation will handle the calorimeter simulation?
- * Particle Id

* Do we expect a background impact on PID for pions/kaons/muons?

Conclusion & Open Questions (a single conclusion)

- * A fast simulation code for background studies is a useful tool if it provides a faithful parametric model of the showering process.
- * Does Leelaps/Bogus fulfill this requirement?
- * How Leelaps/Bogus model the calorimetric cluster?
- * How we will describe the detector?